Industrial Engineering and Production Management

The Industrial Revolution and early developments. The principle of the division of labour and the resulting specialization of skills can be found in many human activities, and there are records of its application to manufacturing in ancient Greece. The first unmistakable examples of manufacturing operations carefully designed to reduce production costs by specialized labour and the use of machines appeared in the 18th century in England. They were signaled by five important inventions in the textile industry: (1) John Kay's flying shuttle in 1733, which permitted the weaving of larger widths of cloth and significantly increased weaving speed; (2) Edmund Cartwright's power loom in 1785, which increased weaving speed still further; (3) James Hargreaves' spinning jenny in 1764; (4) Richard Arkwright's water frame in 1769; and (5) Samuel Crompton's spinning mule in 1779. The last three inventions improved the speed and quality of thread-spinning operations. A sixth invention, the steam engine, perfected by James Watt, was the key to further rapid development. After making major improvements in steam engine design in 1765, Watt continued his development and refinement of the engine until, in 1785, he successfully used one in a cotton mill. Once human, animal, and water power could be replaced with a reliable, low-cost source of motive energy, the Industrial Revolution was clearly established, and the next 200 years would witness invention and innovation the likes of which could never have been imagined.

In 1776 Adam Smith, in his Wealth of Nations, observed the benefits of the specialization of labour in the manufacture of pins. Although earlier observers had noted this phenomenon, Smith's writings commanded widespread attention and helped foster an awareness of industrial production and broaden its appeal.

The next major advance was made in 1797 when Eli Whitney, inventor of the cotton gin, proposed the manufacture of flintlocks with completely interchangeable parts, in contrast to the older method under which each gun was the individual product of a highly skilled gunsmith and each part was hand-fitted.

During the same period similar ideas were being tried out in Europe. In England Marc Brunel, a French-born inventor and engineer, established a production line to manufacture blocks (pulleys) for sailing ships, using the principles of division of labour and standardized parts. Brunel's machine tools were designed and built by Henry Maudslay, who has been called the father of the machine tool industry. Maudslay recognized the importance of precision tools that could produce identical parts; he and his student, Joseph Whitworth, also manufactured interchangeable, standardized metal bolts and nuts.

By the middle of the 19th century the general concepts of division of labour, machine-assisted manufacture, and assembly of standardized parts were well established. Large factories were in operation on both sides of the Atlantic, and some industries, such as textiles and steel, were using processes, machinery, and equipment that would be recognizable even in the late 20th century. The growth of manufacturing was accelerated by the rapid expansion of rail, barge, ship, and road transportation. The new transport companies not only enabled factories to obtain raw materials and to ship finished products over increasingly large distances, but they also created a substantial demand for the output of the new industries.

At this point in the Industrial Revolution, the methods and procedures used to organize human labour, to plan and control the flow of work, and to handle the myriad details on the shop floor were largely informal and were based on historical patterns and precedents. One man changed all of that.

Pioneers of mass production methods. In 1881, at the Midvale Steel Company in the United States, Frederick W. Taylor began studies of the organization of manufacturing operations that subsequently formed the foundation of modern production planning. After carefully studying the smallest parts of simple tasks, such as the shoveling of dry materials, Taylor was able to design methods and tools that permitted workers to produce significantly more with less physical effort. Later, by making detailed stopwatch measurements of the time required to perform each step of manufacture, Taylor brought a quantitative approach to the organization of production functions. (see also Index: time-and-motion study)

At the same time, Frank B. Gilbreth and his wife, Lillian M. Gilbreth, U.S. industrial engineers, began their pioneering studies of the movements by which people carry out tasks. Using the then new technology of motion pictures, the Gilbreths analyzed the design of motion patterns and work areas with a view to achieving maximum economy of effort. The "time-and-motion" studies of Taylor and the Gilbreths provided important tools for the design of contemporary manufacturing systems.

In 1916 Henri Fayol, who for many years had managed a large coal mining company in France, began publishing his ideas about the organization and supervision of work, and by 1925 he had enunciated several principles and functions of management. His idea of unity of command, which stated that an employee should receive orders from only one supervisor, helped to clarify the organizational structure of many manufacturing operations.

 Manufacturing pioneers. Much of the credit for bringing these early concepts together in a coherent form, and creating the modern, integrated, mass production operation, belongs to the U.S. industrialist Henry Ford and his colleagues at the Ford Motor Company, where in 1913 a moving-belt conveyor was used in the assembly of flywheel magnetos. With it assembly time was cut from 18 minutes per magneto to five minutes. The approach was then applied to automobile body and motor assembly. The design of these production lines was highly analytical and sought the optimum division of tasks among work stations, optimum line speed, optimum work height, and careful synchronization of simultaneous operations.

The success of Ford's operation led to the adoption of mass production principles by industry in the United States and Europe. The methods made major contributions to the large growth in manufacturing productivity that has characterized the 20th century and produced phenomenal increases in material wealth and improvements in living standards in the industrialized countries.