Implementing a Simple Ray Tracing

1. Inputs:
(a) Camera/Screen Information:

$$
\begin{aligned}
P_{0} & =\text { location of camera } \\
\mathrm{VPN} & =\text { normal to view plane } \\
\mathrm{VUP} & =\text { up direction } \\
d & =\text { distance of camera from view screen } \\
H & =\text { height of screen } \\
W & =\text { width of screen } \\
X_{\text {res }} & =\text { number of pixels per column } \\
Y_{\text {res }} & =\text { number of pixels per row }
\end{aligned}
$$

(b) Scene Information
$I_{a}=\left(I_{a, r}, I_{a, g}, I_{a, b}\right)=$ RGB components of the intensity of ambient light (constant throughout scene). Note that this is a property of the light and not of the object.
(c) Objects
i. spheres : requires center, radius
ii. planes : requires normal and point on plane
iii. For each object, we need

- $0 \leq k_{a} \leq 1=$ coefficient of ambient light
- RGB color $=\left(c_{r}, c_{g}, c_{b}\right)$ where $0 \leq c_{r, g, b} \leq 255$

2. Compute Screen/View unit vectors $\hat{u}, \hat{v}, \hat{n}$:

If the screen coordinates of the $i, j^{\text {th }}$ pixel are expressed as

$$
(\alpha, \beta) \equiv\left(-\frac{W}{2}+\frac{W \cdot i}{X_{\text {res }}-1},-\frac{H}{2}+\frac{H \cdot j}{Y_{\text {res }}-1}\right)
$$

then, the direction of the ray is (assuming a left handed coordinate system):

$$
P_{1}-P_{0}=\alpha \hat{u}+\beta \hat{v}+d \hat{n}
$$

3. Compute Pixel Color

Loop over column i and row j (i.e. for each pixel (i, j)):
(a) Compute Ray :

$$
\text { ray }=P_{0}+t \operatorname{dir}=P_{0}+t \frac{(\alpha \hat{u}+\beta \hat{v}+d \hat{n})}{\|(\alpha \hat{u}+\beta \hat{v}+d \hat{n})\|}
$$

(b) Loop over objects in world.

Compute the intersection of object with ray (i.e. the t value). Keep track of smallest t value (this is closest object).
(c) For the closest object:

Determine the color that is assigned to the i,j-th pixel:

$$
\text { RGB pixel color }=k_{a}\left(I_{a, r} c_{r}, I_{a, g} c_{g}, I_{a, b} c_{b}\right)
$$

where each component must be restricted to being between 0 and 255 .

