
Ray Tracing Notes
CS445 Computer Graphics, Fall 2014 (last modified 8/4/14)

Jenny Orr, Willamette University

1 The Ray Trace Algorithm

screen

camera

Light1

Light2

in shadow

pixel

refracted ray

re!ected ray

Light3

ray

light ray

computed

Figure 1

1 For each pixel in image {

2 compute ray

3 pixel_color = Trace(ray)

4 }

5 color Trace(ray) {

6 For each object

7 find intersection (if any)

8 check if intersection is closest

9 If no intersection exists

10 color = background color

11 else for the closest intersection

12 for each light // local color

13 color += ambient

14 if (! inShadow(shadowRay)) color += diffuse + specular

15 if reflective

16 color += k_r Trace(reflected ray)

17 if refractive

18 color += k_t Trace(transmitted ray)

19 return color

20 }

21 boolean inShadow(shadowRay) {

22 for each object

23 if object intersects shadowRay return true

24 return false

25 }

1

1.1 Complexity

w = width of image
h = height of image
n = number of objects
l = number of lights
d = levels of recursion for reflection/refraction

Assuming no recursion or shadows O(w ∗ h ∗ (n + l ∗ n)). How does this change if
shadows and recursion are added? What about anti-aliasing?

2 Computing the Ray

In general, points P on a ray can be expressed parametrically as

P = P0 + t dir

where P0 is the starting point, dir is a unit vector pointing in the ray’s direction, and
t ≥ 0 is the parameter. When t = 0, P corresponds to P0 and as t increases, P moves
along the ray. In line 2 of the code, we calculate a ray which starts at the camera P0

and points from P0 to the given pixel located at P1 on a virtual screen (view plane),
as shown in Figure 2.

Special Case General Case

y

z

x

n
u

v

P 0

P1=

 (
αu,βv

,-d
n)

d

di
r

^
^

^

n

u

v

P
0

P1=

 (α,β,-d)

d

dir

y

-z

x

z

Screen

Camera

 World

Coordinates

^

^

^

^

Figure 2

2

If we know P1, we can calculate dir by the equation

dir = unit vector in direction from P0 to P1

=
P1 − P0

||P1 − P0||
.

Once the ray is computed, the method Trace is called (line 3) on this ray. In lines 6-8,
we loop over all the objects in the scene, compute the t value of the intersection point
between our ray and each object, keeping track along the way of which intersection
is the closest. The closest intersection is simply the one with the smallest positive t,
as shown in Figure 3.

 Closest

Intersection

 Point

Screen

Camera

Objects Figure 3

Note, intersections with t = 0 are problematic because they are right on the camera.
We, therefore, only consider values t > ϵ for some small value ϵ. Negative t values
indicate that the object is behind the camera and, thus, are not in view.

Throughout, we assume we are working in a right-handed coordinate system.

2.1 Computing the Pixel Location in World Space (P1): Spe-
cial Case

To compute the ray, we need to compute the location of the pixel P1 as shown in
Figure 4. We consider here the special case where the camera sits at the origin of
our World Coordinate (WC) system, looking along the negative z axis. The image we
are calculating is the projection of the scene onto a virtual screen (view plane) that
sits a distance d from the camera. Its normal is aligned with the z axis. The screen
has some width W and height H as measured in WC. The screen is divided up into
pixels corresponding the desired resolution of our image.

3

n

u

v

P
0

P1=

 (α,β,-d)

d

dir

y

-z

x

z

Screen

Camera

 World

Coordinates

^

^

^

x

y

W

H

(i,j) pixel at (x,y)=(α,β)

(0,0)

Screen

j

i
 (i,j)=(0,0) at

(x,y)=(-W/2,-H/2)

(i,j)=(Xres-1,Yres-1) at

 (x,y) = (W/2,H/2)

Figure 4

The orientation of the camera is specified by unit vectors û, v̂, and n̂, where û points
to the camera’s right, v̂ points up, and n̂ points along the (negative) direction the
camera is looking. (Note, if we were using a left-handed coordinate system, n̂ would
point in the positive direction of the camera.) In this special case, û, v̂, and n̂ are
aligned with the coordinate axes.

Thus, to determine the WC coordinates P1 of a given pixel on the screen, we need to
specify the following information:

P0 = location of camera = (0,0,0). Looks along negative n̂.

n̂ = unit vector normal to view plane, in picture = (0, 0, 1)

v̂ = unit vector in up direction, in picture = (0, 1, 0)

û = unit vector in right direction, in picture = (1, 0, 0)

d = distance of camera from view screen in WC.

H = height of screen in WC.

W = width of screen in WC

Xres = number of pixels in a row

Yres = number of pixels in a column

For the graphics system we are considering, the pixel indices (i = 0, j = 0) corre-
spond to the bottom left of the image, which has world coordinates (−W/2,−H/2).
Pixel indices (Xres − 1, Yres − 1) correspond to the upper right, or world coordinates
(W/2, H/2). Note, index i corresponds to the column index and j to the row index.
In the actual implementation, one may need to store the image as (j, i).

Based on the above inputs, the location of the i, jth pixel can be written as:

P1 = (x, y, z) = (x, y,−d) =
(
−W

2
+

W · i
Xres − 1

,−H

2
+

H · j
Yres − 1

,−d
)

4

We can plug this into the direction of the ray:

dir =
P1 − P0

||P1 − P0||
=

P1

||P1||

and then into equation of the ray:

P = P0 + t dir = t dir

2.2 Computing View Coordinate Axes: General Case

Suppose û, v̂, and n̂ are not aligned with the coordinate axes x, y, and z but instead
are shown as on the right side of Figure 2? In this case, we calculate û, v̂, and n̂
assuming we are given the following information:

VPN = normal to view plane (camera points in -VPN direction)

VUP = up direction of camera

We can then calculate û, v̂, and n̂ as follows:

n̂ =
VPN

||VPN||

û =
VUP × VPN

||VUP × VPN||
v̂ = n̂× û

Given û, v̂, and n̂, we can write the difference P1 − P0 (in WC) as

P1 − P0 = αû+ βv̂ − dn̂

where α and β can be calculated similarly as before:

(α, β) =
(
−W

2
+

W · i
Xres − 1

,−H

2
+

H · j
Yres − 1

)

3 Computing Intersections

Given P1, we can calculate the ray. Given the ray, we next need to calculate the
intersection of the ray with the objects in the scene. Below we show how this is done
for spheres and planes.

5

3.1 Spheres

A sphere can be represented by its center Pc = (a, b, c) and radius r. Given these,
the equation for the sphere can be written as

(x− a)2 + (y − b)2 + (z − c)2 = r2.

In vector notation, this becomes

(P − Pc) · (P − Pc) = r2.

where P = (x, y, z). That is, any point P satisfying the above equation, must be on
the surface of the sphere.

To find the ray-sphere intersection we need to find the points that simultaneously
satisfy both the equation of the sphere and the equation of the ray. To find these
points, we insert the equation of the ray in for P to give

(P0 + t dir− Pc) · (P0 + t dir− Pc) = r2

and solve for t. Multiplying out we obtain

(P0 − Pc) · (P0 − Pc) + 2 dir · (P0 − Pc)t+ dir · dir t2 = r2

which is a quadratic equation in t. Defining the scalars B and C as

B = 2 dir · (P0 − Pc)

C = (P0 − Pc) · (P0 − Pc)− r2

and noting that dir · dir = 1, we obtain the equation t2 +Bt+C = 0. The solution
is

t =
−B ±

√
B2 − 4C

2
.

There are 0, 1, or 2 real solutions to this depending on the value of the discriminant
D = B2 − 4C. In particular,

D < 0 no intersections.
D = 0 1 intersection, ray grazes sphere.
D > 0 2 intersections, take smaller t value.

If t < 0 then the object is behind viewer and is thrown out.

Given a point P on the surface of a sphere, it is simple to determine the surface
normal at P :

normal =
P − Pc

||P − Pc||

In general, one can easily compute the normal to a surface if one has the equation of
the surface written as a function f(x, y, z) = 0. The normal is then just the gradient
of f . For example, in the case of a sphere, we have

f(x, y, z) = (x− xc)
2 + (y − yc)

2 + (z − zc)
2 − r2

6

The gradient is then

normal =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (2(x− xc), 2(y − yc), 2(z − zc))

which, when normalized, gives the same result as (P − Pc)/||P − Pc||

3.2 Planes

A plane is defined by its normal N and a point on the plane Q0. The equation of the
plane is then given by

(P −Q0) ·N = 0

where P = (x, y, z). To find the intersection of the plane and the ray we insert the
expression for the ray into the above equation to obtain

(P0 + t dir−Q0) ·N = 0

and solving for t gives

t =
(Q0 − P0) ·N

dir ·N
Note, a zero denominator means that the line and plane are parallel. In such a case
there are either no intersections if the ray does not lie in the plane, or there are an
infinite number of intersections.

Rectangles aligned with the axes are also easy to represent because they are just
planes with the range constrained.

4 Computing Pixel Color: Phong Lighting Model

At this point, we have found the intersection point of our ray with the closest object in
the scene. Recall, that this ray points along the line of sight from the camera (viewer)
to a particular pixel in the screen. If the viewer looks along the ray, they will look
through this pixel to see the closest object at the intersection point. Thus, the color
at this intersection point is exactly the color we want to set this pixel. Therefore, our
next task is to determine the color at the intersection point (lines 12-14 in code). We
ignore shadows and reflections for the moment. We also assume that light sources
are simple point lights, i.e. they have a point location, have no physical extent and
they shine light equally in all directions.

7

Local Re�ected Transmitted

Figure 5

The color at the intersection point is composed of 1) local color based on the direct
interaction of surface with the light sources, 2) the color resulting from reflected light,
and 3) color from refracted light:

pixel color = local color + α1*reflected + α2*refracted

where α1 and α2 are material dependent weights (less than 1) that control how much
light is reflected or refracted.

Here, we will discuss only the local color as modeled by the Phong Lighting Model.
Note that the reflected and refracted light can be computed by recursively applying
the Phong Model.

The Phong Lighting Model computes the local color by dividing the light-surface
interaction into three components: ambient, diffuse, and specular. The local color is
the sum of each contribution:

local color = ambient + diffuse + specular

Ambient Di use Specular All

Figure 6

The needed parameters are listed here and will be discussed in more detail next.

Intersection parameters:

N = unit vector along surface normal at the intersection point.

V = unit vector pointing from intersection point to camera

Lj = unit vector pointing from intersection point to jth light source

8

N

V
L

Object

Intersection Point

viewer (camera)

Light

Surface

Normal

Figure 7

Surface Material Parameters:

ca = (ca,r, ca,g, ca,b) = ambient rgb color components of surface

cd = (cd,r, cd,g, cd,b) = diffuse rgb color components of surface

cs = (cs,r, cs,g, cs,b) = specular rgb color components of surface

ka = coefficient of ambient reflection of surface

ka = coefficient of diffuse reflection of surface

ks = coefficient of specular reflection of surface

kr = reflection coefficient (used only for recursive reflection - see “Reflections” section)

n = specularity (measure of the sharpness of the specular highlight)

The coefficients of reflection (ka, kd, ks, and kr) are in the range (0,1) and are a
measure of how much the surface reflects the light. The surface colors (ca, cd and cs)
represent the base color of the surface and are also in the range (0,1).

Light Parameters:

Ia,global = (Ia,r,global, Ia,g,global, Ia,b,global)

= ambient rgb color/intensity components of a global ambient light source.

Ia,j = (Ia,r,j, Ia,g,j, Ia,b,j) = ambient rgb color/intensity components of jth light source.

Id,j = (Id,r,j, Id,g,j, Id,b,j) = diffuse rgb color/intensity components of jth light source.

Is,j = (Is,r,j, Is,g,j, Is,b,j) = specular rgb color/intensity components of jth light source.

The light color/intensity (Ia, Id and Is) model both the rgb color and the brightness
of the light sources. One could separate the color from the intensity for more control.

Note, in the equations that follow, we define the product ∗ of two vectors A =
(a0, a1, a2) and B = (b0, b1, b2) as

A ∗B = (a0 ∗ b0, a1 ∗ b1, a2 ∗ b2)

9

4.1 Ambient Color Contribution

Ambient light is the “background” light that results from many rays bouncing off
of objects multiple times. The ambient light allows us to see all surfaces in a room
even if there is no direct light on the surfaces. Since it would be too complex to
model every single ray, we instead model the average behavior. The modeling is very
simplistic in that we assume that ambient light is constant over the entire scene. Each
light source contributes to the ambient light. We also often add a generic ambient
light independent of any light source and only dependent on the scene. This allows
us to increase the brightness of the scene as a whole.

Because ambient light is constant, it illuminates all surfaces with an equal brightness.
A scene with only ambient light is very flat.

The contribution of ambient light to the pixel color is:

Ca = ka(Ia,global ∗ ca) + ka
∑
j

(Ia,j ∗ ca)

For simplicity of notation, we can treat the global ambient light as the 0th light source,
with Ia,0 = Ia,global, Id,0 = 0, and Is,0 = 0 so that the ambient contribution can be
written simply as

Ca = ka
∑
j

(Ia,j ∗ ca)

4.2 Diffuse and Specular

Diffuse and specular components are a result of light coming directly from a light
source to the intersection point (of ray and object) and then being reflected from the
object back to the observer’s eyes.

Surfaces (i.e. materials) that are rough tend to scatter the light in all directions and
have a rather dull finish. This type of illumination is referred to as diffuse.

Surfaces that are smooth and highly reflective (i.e. shiny) do not scatter the light but
rather reflect light mostly in one direction. Such objects have what are called specular
highlights. While the difference between diffuse and specular is rather artificial, it is
still useful to model them separately.

To compute the intensity of the diffuse and specular components, we calculate how
much light from the light source bounces from the intersection point back to the eye.
This is described more below.

4.2.1 Diffuse Light Component

Objects that have a dull, matte finish are said to have a large diffuse component.
The surface at the macroscopic level may appear smooth but at the microscopic
level, there are many tiny bumps that scatter light in all directions.

10

Figure 8

The microscopic surface normal at any given point, is generally not aligned with the
macroscopic surface normal. As a result, light appears to scatter in many directions.
We make the simplifying assumption that the light is scattered equally in all directions
so that the brightness is independent of viewing angle. However, the brightness is
dependent on the angle that the light ray makes with the surface normal.

The diffuse light contribution can be calculated as

Cd = kd
∑
j

(cd ∗ Id,j)(Lj ·N)

which is independent of V but changes as the angle of Lj changes. Note, (Lj ·N) < 0
implies that the light is below the surface and thus does not contribute to the color,
assuming the surface is opaque.

Figure 9: small α gives large diffuse (left), large α gives small diffuse (right)

4.2.2 An Aside on the Diffuse Light Formula

We attempt here to explain in more detail why the diffuse light contribution is calcu-
lated as it is. Imagine a cylinder of light coming from the light source and falling on
the object (here we are ignoring light attenuation). The cross sectional area of this
cylinder is A. The energy per unit area hitting the surface when the light is right
overhead is E/A where E is the energy emitted from the light source. If the light is at
an angle then the surface area hit by the light is larger and is given by Aθ = A/ cos θ
so the energy per unit area is E cos θ/A, i.e. it is smaller by an amount cos θ. Thus
the brightness is a function of L ·N = cos θ where L is the unit vector pointing from
the intersection point to the light source and N is the unit normal to the surface.

11

Cross

Sectional

Area A

A

θ

Light BeamLight Beam
Light Beam

at angle

Area on surface

hit by light beam = A
 Area on surface

hit by light beam = A / cos θ

Light energy per unit area = E / A Light per unit area = E cos θ / A Figure 10

Why does the brightness not depend on the viewing angle? Once the light is fixed, we
have a fixed energy per unit area hitting the surface. As the viewing angle increases
the area viewed increases. However, the amount of this energy that gets reflected
decreases so as to offset the increase in viewing area. Thus the viewer sees the same
brightness from any angle.

4.2.3 Specular Light Component

Objects that are shiny have what we call specular highlights. Unlike diffuse surfaces,
shiny surfaces are very smooth even at the microscopic level. When light hits the
surface, the light is reflected mostly in one direction, the direction of reflection R. A
small amount of spreading is allowed around R.

Figure 11

The specular light contribution can be calculated as

Cs = ks
∑
j

(cs ∗ Is,j)(V ·Rj)
n

where Rj is a unit vector in the direction of the reflected ray of the jth light source.
It can be calculated with the vector equation

Rj = 2(Lj ·N)N − Lj

As in the diffuse case, (Lj · N) < 0 implies that the light is below the surface and
thus does not contribute to the color, assuming the surface is opaque. One should

12

also check to make sure that (V ·N) > 0 to make sure the viewer is above the surface
and (V ·R) > 0 to make sure that the viewer is within 90 degrees of R.

The specular light is very bright if the viewer’s angle is close to R (i.e. small ϕ) and
drops off very quickly as ϕ increases. The exponent n is called the specularity and
is a measure of the sharpness of the specular highlight. If n is small, the highlight is
spread out. The larger n becomes, the sharper the highlight becomes. Typically n
ranges from 1 up to several hundred.

The color of the specular highlight is often set to the color of the light source and
not the object, i.e. cs is set to 1. This is because we expect that a highly reflective
surface will not alter the light. A mirror is the extreme case of this.

4.3 Final Pixel Color

Combining the ambient, diffuse, and specular contributions (see Figure 6), we have
that the pixel’s local color at the intersection point is computed by the equation:

C =
∑
j

{ka(Ia,j ∗ ca) + kd(cd ∗ Id,j)(Lj ·N) + ks(cs ∗ Is,j)(V ·Rj)
n}

4.4 Shadows

The diffuse and specular components do not contribute to the color of the intersection
point if there is an opaque object that sits between the intersection point and the
light position. One can check for this as follows. Compute the shadow ray which is
a ray with origin (P0) set to the intersection point and direction (dir) set to the unit
vector pointing from the intersection point to the light source. One then loops over
all objects in the scene to check to see if the shadow ray intersects any object (see
lines 22-24 in code). One must be sure that the object is between the light source and
intersection point. If so, then that light does not contribute to the diffuse or specular
light intensity at the intersection point (see ”if” condition in line 14 of code).

Screen

Camera

Shadow Ray

Intersection

 Point

Light

Causes a shadow

 at intersection

 Does not cause a

shadow at intersection

Figure 12

13

4.5 Reflections

Reflections can be computed recursively as follows. Compute the ray with origin (P0)
set to the intersection point and direction (dir) equal to the reflected direction of V :

Rv = 2(V ·N)N − V

This direction is chosen because it is most likely to contribute the largest reflected
value. We can then recursively call the Trace method with this ray to compute the
reflected color which is then added to the local color as shown in lines 15-16 of the
code. A depth variable can be added to control the number of recursions. Generally,
1 or 2 recursions are sufficient.

N
Reflected

 Ray

viewer (camera)

Surface

Normal

φ φ

Figure 13

This approach is a crude approximation that works best with fairly reflective surfaces.
For diffuse surfaces, the approximation is poor, which is why global illumination
methods such as radiosity were developed.

4.6 Textures

4.6.1 Texture Types

• The texture data can be a 2D image or a 3D solid texture.

• The coordinates of the texture are called the texture parameters and the as-
signment of the texture parameters to the surface is called parameterization.
Texture parameters are commonly denoted u, v for 2D and u, v, w for 3D.

• Texture images, texture(u,v) are good when the surface has a natural param-
eterization and/or you want a “decal” or “projected” look. This is the most
common type of texture mapping.

• Solid textures, texture(u,v,w), are good when you want a surface to appear
carved out of a material (e.g. wood, marble).

• Textures can be stored as a raster image, a 3D discrete grid, or can be computed
on the fly procedurally. In procedural mapping (surface or solid): the “image”
is defined mathematically.

14

4.6.2 Texture Parameterizationi: 2D Image Textures

2D texture is mapped to a 2D surface embedded in 3D space. See figure below. In
this process we assume that the image is stored in some nxm array. Each point in
the array is called a texel. WLOG, we can scale this so that the image fits in a range
0 ≤ u, v ≤ 1.

st coordinates

(flat 2D space)

The Map

 uv coordinates

(2D embedded in 3D space)

The 3D Surface

u

v
s

t

plane

u

v

cylinder
u

v

sphere

x

y
z

xyz coordinates

 (3D space)

Each intersection point, gets mapped back to the (u,v) coordinates of the shape,
which then is mapped to the (s,t) coordinates of the texture in order to determine
the color at that intersection point.

Parameterization is somewhat straight forward for spheres, planes, cylinders,and rect-
angular surfaces (see sphere below).

Parameterization is somewhat less obvious for arbitrary polygons or volumes. In
the case of volumes, one can do a 2-step process of first mapping to an easy to
parameterize intermediate shape such as a sphere or cylinder. The second step is to
map from the intermediate shape to the surface of the actual object.

4.6.3 Spheres

y

z

x

C

P

Pole

N

r

v

u

15

Assume center is at C and radius = r.

We use a left handed coordinate system. v is zero at north pole and 1 at south pole.
The angle that is made is called θ which ranges between 0 and π.

u moves around in the xz plane around y (use left-hand rule to get direction). The
angle is ϕ which ranges between 0 and 2π.

Let P be the intersection point. Then the normal at P is

N =
P − C

||P − C||
=

P − C

r

1. Compute v:

v =
θ

π
But cosθ = N · Pole so that

v =
cos−1(N · Pole)

π

Letting Pole = (0, 1, 0) then

v =
cos−1((py − Cy)/r)

π

2. Compute u: Note, if v = 0 or 1 then u can be anything.

u =
ϕ

2π

But tanϕ = x/z = px−Cx

pz−Cz
so that

u = 0.5 +
1

2π
tan−1 px − Cx

pz − Cz

Note, we add .5 because tan−1 returns a value between −π and π rather than 0 and
2π .

4.6.4 3D Parameterization: 3D Solid textures

(u,v,w) are usually taken to be the world space or object space. Often these are
defined procedurally (wood, marble). If we want the texture to move with the object,
then one needs to use the object space.

4.6.5 Bump Mapping

If we want fine grained surface texture, we can define a base surface (e.g. a sphere)
together with the small displacement from the sphere (e.g. the small bumps on the
surface of an orange). The combined result is called a displacement map.

16

Surface

Displacement Map

+ =

Resulting Surface

surface normals
Displacement Map

This process can be very expensive because it requires adding many, many tiny tri-
angles in order to model the displacement.

A cheaper alternative is called bump mapping which mimics the normals of the dis-
placement map but without actually changing the surface itself. The surface pertur-
bations can be stored as a texture. Since the surface is not changed, no geometry
needs to be added. One just needs to adjust the surface normal at the time the
lighting calculation is done. This is a trick of the eye. If the displacement is small,
the viewer won’t be able to tell that the surface has not actually changed.

Surface

Bump Map - defines perturbed normals

+ =

Resulting surface

 with perturbed

 normals

surface normals
Bump Map

Below is an example of the bump map (texture file) together with several resulting
bump mapped spheres. It is difficult to tell that the surface is actually just a smooth
sphere.

Texture �le

Bump mapped surface

17

