Name \qquad Score
Instructions:This exam is closed-book and closed-notes. Anything may be stored electronically on your calculator. Consultation is allowed ONLY with the instructor. Explain and/or show work for credit.

1. Re-write the equation without any logarithms: $\log (y)=1.5 \log (x)+1.2$
2. Simplify and write without any negative or fractional exponents:
(a) $\left(\frac{3 x^{2} y^{-2} \sqrt{z}}{2 x^{6} y^{-1} z^{3}}\right)^{1 / 2}$
(b) $(x+2 \sqrt{x})(3-3 \sqrt{x})$
3. Factor each expression as fully as possible:
(a) $x^{4}-x^{2}$
(b) $x^{2}+2 x-15$
4. Combine into as few logarithms as possible:
(a) $\log _{5}(x)+2 \log _{5}(y)$
(b) $\frac{\log _{a}(d)-\log _{a}(b)}{\log _{a}(c)}$
5. Solve the equations exactly:
(a) $3(x-2)=5 x+7$
(b) $4 x^{2}+2 x-1=0$
6. Find the vertex of the parabola $y=x^{2}-3 x+5$; explain your method.
7. Find approximate solutions to $x^{3}-2 x-7=0$, and tell how you know you have all the solutions.
8. Find an approximate solution to $2^{x}=4-x$.
9. A radioactive isotope decays exponentially from 10 grams to 4 grams in 24 hours. When will only 0.01 grams remain?
10. Give the equation of the line that passes through $(3,8)$ and is parallel to $3 x+2 y=4$.
11. Give an equation for an exponential function whose graph passes through $(1,4)$ and $(3,9)$.
12. For each, draw a unit circle and indicate on the circle how it gives the value of:
(a) $\sin (\pi / 2)$
(b) $\cos (\pi)$
(c) $\cos (0)$
13. The functions f, g and h are as given:
(a)

$$
y=f(x)
$$

x	$g(x)$
-3	-3
-2	-2.5
-1	-1.5
0	0.5
1	2
2	3
3	2

$h(x)=\sqrt{5-x}$
(b) Find each if possible, or say why it is not possible; using the graph may require some visual estimates.

1. $f(g(0))$
2) $g(f(0))$
3) $h(f(2))$
4) $g(h(-11))$
5) $\frac{f(1.5)-f(1)}{1.5-1}$
(c) Suppose that the entire graph of f is given above. Estimate the domain and range of f.
(d) Give the domain of h.
14. Suppose that $h(x)=\sqrt{\cos (5-x)}$, find functions f and g so that $h(x)=f(g(x))$. There are several acceptable answers, but DO NOT choose $f(x)=x$ or $g(x)=x$.
15. The price P of a bag of fertilizer varies with the number of bags N that are purchased so that $P=f(N)$.
(a) Suppose that $f^{-1}(6)=13$. Tell what this means to someone purchasing fertilizer.
(b) Suppose instead that $f(N)=5+\frac{5}{N}$ dollars. (This contradicts the numbers in (a); don't worry about that). Find a formula for f^{-1} and give appropriate units.
16. Consider the function $f(x)=3^{x}$. Give the formula for a function $g(x)$ so that g 's graph is found by shifting the graph of f left 2 units, reflecting about the x axis, and then shifting up one unit.
17. A snowstorm deposits snow on a town which later melts. The depth D of the snow, in feet, is given as a function of the number of hours t after midnight in the following graph.

(a) What is the average rate of change of snow-depth between 2 a.m. and 6 a.m.?
(b) What does your answer in (a) mean in non-mathematical terms?
