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Abstract. In this note, we exhibit the existence of a classical Hilbert modular cusp form
over Q(

√
5) of partial weight one which does not arise from the induction of a Grossenchar-

acter from some CM extension of Q(
√

5).

1. Introduction

Fred Diamond asked [4] whether there exists a totally real field F and a classical Hilbert
modular form f of partial weight one which does not arise from the induction of a Grossen-
character from some CM extension of F . The aim of this note is to answer the question in the
affirmative (see Theorem 1.1). Such a form would, assuming local–global compatibility, give
rise to a compatible family of representations (L, {ρλ}) with the following intriguing property:

Let ` be a prime in OF not dividing the level of f and totally split in F . If λ
is a prime in OL above `, then the corresponding representation,

ρλ : GF → GL2(Oλ)

will be geometric, have Zariski dense image, and yet be unramified for at least
one v|`.

Many cases of local-global compatibility are now known [6]. Although such a beast seems
somewhat peculiar, there is no obvious a priori reasons why it should not exist. On the
other hand, there does not seem to be any obvious way (even conjecturally) to produce such
a modular form, either by automorphic or motivic methods. Hence, to answer the question,
we must find such a form, which we do. Although (in principle) the method of computation
used in this paper applies to general totally real fields, we shall restrict to real quadratic fields
F with narrow class number one for convenience. Indeed, all of our computations took place
with Hilbert modular forms for the field F = Q(

√
5).

1.1. The Computation. Our search for partial weight one Hilbert modular forms is premised
on the philosophy that finite dimensional spaces of meromorophic modular forms which are
stable under the action of the Hecke algebra ought to be modular. In the case of classical
modular forms, this idea has been formalized by George Schaeffer. Let V be a finite dimen-
sional space of meromorphic modular forms on Γ0(N) of weight k and nebentypus χ which
are holomorphic at infinity. In his thesis [8], Scaheffer proves that if V is stable under the
action of a Hecke operater Tp for p 6 |N, then V ⊆ Mk(Γ0(N), χ,C). As a corollary, one
observes that for any such V containing Mk(Γ0(N), χ,C), the chain (for p 6 |N)

V ⊇ V ∩ TpV ⊇ V ∩ TpV ∩ T 2
p V ⊇ ...

stabilizes to Mk(Γ0(N), χ,C) in less than dimC V steps [8].
1
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Schaeffer’s principal application of this theorem is the effective computation of the space
M1(Γ0(N), χ,C) of classical weight one modular forms. Suppose one wishes to compute this
space. To begin, simply take any Eisenstein series E ∈ M1(Γ0(N), χ−1,C) and let V be the
space of ratios of forms in M2(Γ0(N),C) and E. Then V ⊇M1(Γ0(N), χ,C). It then suffices
to compute the intersection of V with its Hecke translates. One can reduce this computation
to one in linear algebra by passing to Fourier expansions. The Fourier expansions of forms
in M2(Γ0(N),C) are easily calculated to any bound via modular symbols and the Fourier
expansion of E has a simple formula. Hence, the Fourier expansion of any form in V is easily
calculated to any bound. The operator Tp acts on Fourier expansions formally via a well
known formula. What makes the method effective is that it requires only an explict finite
number of Fourier coefficients for a basis of the space V to calculate M1(Γ0(N), χ,C). The
number of coefficients required is determined by the Sturm bounds.

Schaeffer’s method generalizes nicely to the case of Hilbert modular forms. Let n be a mod-
ulus of Q(

√
5) and χ a ray class character of conductor n; we are interested in calculating the

space S[m,1](Γ0(n), χ,C) of Hilbert cusp forms of partial weight one. As in the case of classical

modular forms, there exists an Eisenstein series E1,χ−1 ∈ M[1,1](Γ0(n), χ−1,C) and one can
consider the space V of ratios with numerators in S[m+1,2](Γ0(n),C) and denominator E1,χ−1 .
This is a finite dimensional space of meromorphic forms which contains S[m,1](Γ0(n), χ,C)
as its maximal holomorphic subspace. Assuming n is square free, one can use Dembele’s
algorithm [3] as implemented in magma [1], to produce the Fourier expansions of a basis for
the space S[m+1,2](Γ0(n),Q(

√
5)) to any desired degree of accuracy. The Fourier expansion

of E1,χ−1 is given by an explict formula. Hence, the Fourier expansion of the meromorphic
forms in V can be calculated to any desired degree of accuracy. For a prime p of OF , the
Hecke operator Tp acts on the Fourier expansions of the meromorphic forms in V formally
via an explicit formula. So, as in the case of classical forms, one may hope to calculate the
Tp stable subspace of V via techniques in linear algebra.

Unfortunately, this direct generalization of Schaeffer’s method is impractical from a com-
putational prospective. In comparison with the case of classical modular forms, the number
of Fourier coefficients needed to prove equality of two modular forms and the amount of com-
putation needed to calculate those Fourier coefficients is much greater. For this reason, we
structure our search method so that it requires as few Fourier coefficients as possible.

For the details of our search, we refer the reader to Section 2.6. But the idea is as fol-
lows; we calculate the Fourier expansions of the forms in S[m+1,2](Γ0(n), 1)/E1,χ−1 truncated
to some chosen bound. We calculate the intersection of these spaces of truncated formal
Fourier expansions using linear algebra. If the dimension of the intersection coincides with
the dimension of the subspace of forms with complex multiplication (CM), then every form
in S[n,1](Γ0(n), χ,Q(

√
5)) has CM. (Using class field theory, we can compute the dimension

of the CM subspace in advance.) In practice, using a modest bound, we were able to restrict
the existence of a non-CM weight one Hilbert modular form of small level and norm to a
handful of canidate spaces where the intersection is larger than expected. One can then check
if a form f ∈ V in such a candidate space is holomorphic by checking if there exists a form
g ∈ S[dn,d](Γ0(n), χd,Q(

√
5)) such that the fd = g. Our seach yielded the existence of a

nonparallel weight one Hilbert modular form without CM.
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Main Theorem. Let n = (14) ⊂ OQ(
√
5) and let χ be the degree 6 ray class character of

conductor n∞1∞2 such that χ(2) = −1+
√
−3

2 . The space of cusp forms S[5,1](Γ0(14), χ,C) is

2-dimensional, and has a basis with coefficients in H = Q(
√

5, χ). This space has a basis
over L = H(

√
−19) consisting of two conjugate eigenforms, neither of which admit complex

multiplication.

Remark 1.1. Let π be the automorphic representation of GL2(A∞F ) associated to either of
these newforms. Since the character χ has conductor prime to 2 and the level at 2 is Γ0(2),
the local component π2 is Steinberg. In particular, this implies that local-global compatibility
results of [6, 7] could not be proved directly using congruence methods to higher weight, which
would only be sufficient for proving compatibility up to N semi-simplification.

2. Hilbert Modular Forms

In this section, we state some basic definitions and results on classical Hilbert modular
forms. Let F be a real quadratic field of narrow class number one. We fix an ordering on the
two embeddings of F into R and denote, for a ∈ F, the image of a under the i-th embedding
by ai. We say an element a ∈ F is totally positive if ai > 0 for all i and denote the ring of all
such elements by O+

F . Similarly, we have two natural embeddings of the matrix ring M2(F )
into the matrix ring M2(R). If γ ∈ M2(F ), let γ1 and γ2 denote the image of γ under the
i-th embedding. Let dF = (δ) be the different of F/Q where δ ∈ O+

F . For an integral ideal n
of F, we define

Γ0(n) :=

{(
a b
c d

)
∈ GL+

2 (F ) : a, d ∈ OF , c ∈ nd, b ∈ d−1, ad− bc ∈ O×F

}
where GL+

2 (F ) is the subgroup of GL2(F ) composed of matrices with totally positive deter-
minant. If H is the complex upper half-plane, the group Γ0(n) acts on H×H via fractional
linear transformations by the rule(

a b
c d

)
.(z1, z2) =

(
a1z1 + b1
c1z1 + d1

,
a2z2 + b2
c2z2 + d2

)
.

Let k := [k1, k2] be an ordered pair of nonnegative integers. For γ =

(
a b
c d

)
∈ GL+

2 (F )

and z ∈ H×H set

j(γ, z)k := det(γ1)
−k1
2 det(γ2)

−k2
2 (c1z1 + d1)

k1(c2z2 + d2)
k2 .

If f : H×H→ C and γ ∈ GL+
2 (F ), we write f |γ to mean the function f |γ : H×H→ C

given by
f |γ(z) = j(γ, z)−kf(γz).

Consider a numerical character χ : (OF /n)× → C× which statisfies χ(u) =
(
u1
|u1|

)−k1 ( u2
|u2|

)−k2
for all u ∈ O×F . A Hilbert modular form of weight k, level n, and character χ is a holomorphic
function f : H×H→ C such that for all γ ∈ Γ0(n),

(2.1) f |γ(z) = χ(d)f(z).

We denote the C-vector space of all such functions by Mk(Γ0(n), χ,C) and by Mk(Γ0(n),C)
when χ is the trivial character. As in the case of classical modular forms, we can compute
Fourier expansions of Hilbert modular forms.
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2.1. Fourier Expansions. If f ∈Mk(Γ0(n), χ,C), then for all d ∈ d−1F

f(z) = f(z + d)

by the transformation rule (2.1) since
(
1 d
0 1

)
∈ Γ0(n). It follows from Fourier analysis that the

form f is given by the series

f(z) =
∑
α∈OF

cα(f)e2πi(α1z1+α2z2)

in a neighborhood of the cusp (∞,∞). The Koecher Principle [5, §1] states that cα(f) = 0
unless α is totally positive or α = 0. If the constant term of the Fourier expansion of f |γ
is zero for all γ ∈ GL+

2 (F ), then we call f a cusp form and denote the space of such forms
Sk(Γ0(n), χ,C). We denote the space of cusp forms of level n, weight k, and trivial character
by Sk(Γ0(n),C).

Besides the Koecher Principle, the Fourier expansions of Hilbert modular forms have ad-
ditional structure. Let f ∈ Sk(Γ0(n), χ,C). For any totally positive unit η in OF , one can
check that the coefficient cα(f) satisfies the identity:

(2.2) cηα(f) = η
k1/2
1 · ηk2/22 · cα(f) = η

(k2−k1)/2
2 · cα(f)

by using the transformation rule (2.1) with
(
η 0
0 1

)
∈ Γ0(n) and equating Fourier expansions.

If desired, we can create a formal Fourier expansion indexed over the ideals of F rather than
indexed over elements of OF . In particular, for an ideal a = (α), we can set

(2.3) c(a, f) := N(a)(k1−k2)/2 · cα(f)/α
(k1−k2)/2
1 = cα(f) · α2

(k1−k2)/2,

and one can easily check that this is independent of the choice of totally positive generator α
of a by using (2.2) above.

2.2. Hecke Operators. For an integral ideal n of OF , let

Γ1(n) =

{(
a b
c d

)
∈ GL+

2 (F ) : a ∈ OF , b ∈ d−1, c ∈ nd, d− 1 ∈ n

}
.

If q is an integral ideal of OF , we may choose a totally positive generator π of q and write
the disjoint union

Γ1(n)

(
1 0
0 π

)
Γ1(n) =

∐
j

Γ1(n)γj

where the γj are a finite set of right coset representatives. We define the qth Hecke operator
to be

(2.4) Tqf :=
∑
j

f |γj .

If q = (π) is a prime ideal relatively prime to n, then we may choose the following coset
representatives for the γj :

γβ :=

(
1 εδ−1

0 π

)
and γ∞ :=

(
α βδ−1

δν π

)(
π 0
0 1

)
where ε runs through a complete set of representatives for OF /n, δ is a totally positive
generator for the different d, ν is a totally positive generator for n, and α, β ∈ OF such
that απ − νβ = 1. If we normalize our Hecke operator by multiplying it by the constant
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π
k1/2−1
1 π

k2/2−1
2 , then it has the following effect on the Fourier expansion of a modular form

f ∈Mk(Γ0(n), χ,C):

cα(Tqf) = cαπ + πk1−11 π2
k2−1χ(q)cα/π = cαπ + πk2−k12 N(q)k1−1χ(q)cα/π

where N(q) denotes the numerical norm of the ideal q. On the other hand, if q is prime and
exactly divides n, then

cα(Tπf) = cαπ.

2.3. Basis For Sk(Γ0(n), χ,C). In general, there will not be a basis of eigenforms for Sk(Γ0(n), χ,C).
Rather, there will be a new-space Snew

k (Γ0(n), χ,C) which will be generated by eigenforms

which we now describe.

Let m be a divisor of n, and let b be a divisor of n/m. Then there is a map

Vm,b : Sk(Γ0(m), χ,C)→ Sk(Γ0(n), χ,C)

given by ∑
α∈OF

cαq
α 7→

∑
α∈OF

cαq
bα

where b = (b) and b ∈ O+
F . This map only depends on b up to a scalar which one can

easily verify from (2.2). Let Sold
k (Γ0(n), χ,C) be the subspace of Sk(Γ0(n), χ,C) spanned

by Vm,b(f) for all f ∈ Sk(Γ0(m), χ,C) and all (m, b) with m|n where m 6= n and b|(n/m).

The orthonal complement of Sold
k (Γ0(n),C), under the Petersson inner product, is the space

Snew
k (Γ0(n), χ,C); it has a basis of eigenforms which we will refer to as newforms.

Dembele’s algorithm computes the space of newforms Snew
k (Γ0(n), χ,C) by using the fact

that they are in bijection, via the Jacquet-Langlands correspondence, with a certain space of
automorphic forms on a quaternion algebra. We then exploit the fact, special to GL(2), that
the Fourier expansion of a newform can be recovered from its Hecke eigenvalues. Let q be a
non-zero integral prime ideal, and write q = (π) for some totally positive π. There is a Hecke
operator Tq which acts on the space of cusp forms Sk(Γ0(n), χ,C) as defined in (2.4). With
the identities

Tqn = Tqn−1Tq − χ(q)πk1−11 πk2−12 Tqn−2 ,

for (q, n) = 1,

Tqn = Tnq

for q|n, and

Trs = TrTs

for (r, s) = 1, one can compute the Fourier expansions of the newforms in Snew
k (Γ0(n), χ,C).

One can easily calculate the effect of the Hecke operators on formal Fourier expansions indexed
over ideals of OF by using (2.3).
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2.4. Eisenstein Series of Weight One. In [9], Shimura gives a prescription which attaches
to any pair of narrow class characters of F an Eisenstein series of parallel weight k. The Fourier
expansions of these Eisenstein series are calculated in [2], and we recall this result here. As we
only make use of Eisenstein series of parallel weight k = [1, 1] associated to pairs consisting of
a trivial and nontrivial character, we include only the details which are relevent to this case.

In the classical setting, the Eisenstein series are defined as sums over a lattice, and an
analogous construction is used in the case of Hilbert Modular Forms. Let ψ be a totally odd
character of the narrow ray class group modulo n and let

U = {u ∈ O×F : Nm(u) = 1, u ≡ 1 mod n}.
For z ∈ H2, s ∈ C with Re(2s+ 1) > 2, and eF (x) = exp(2πi · TrF/Q(x)), define

f(z, s) := C· 1

Nm(n)

∑
a∈OF , b∈d−1

(a,b) mod U, (a,b)6=(0,0)

 1

(az + b)|az + b|2s
×

∑
c∈OF /n

sgn(c)[1,1]ψ(c)eF (−bc)


where

C :=

√
dF

[O×F : U ]Nm(d)(−2πi)2

and sgn(c)r := sgn(c1)
r1sgn(c2)

r2 and r = [r1, r2] ∈ (Z/2Z)2.

Observe that the above sum for f(z, s) is over pairs (a, b) of nonzero elements of the
product Of × d−1 modulo the action of U (which is diagonal multiplication) as well as over
the representatives c for OF /n.

For fixed z, f(z, s) has meromorphic continuation in s to the entire complex plane. Set

E1,ψ(z) := f(z, 0).

In [2], the authors compute the Fourier series of the above Eisenstein series, E1,ψ. Their result
is summarized in the following proposition.

Proposition 2.1. Let n be an integral ideal of F and let ψ be a totally odd character of the
narrow ray class group modulo n. Then there exists an element E1,ψ ∈M[1,1](Γ0(n), ψ,C) such

that c(a, E1,ψ) =
∑

m|a ψ(m) for all nonzero ideals a of O and c(0, E1,ψ) = L(ψ,0)
4 . Explicitly,

E1,ψ =
L(ψ, 0)

4
+
∑
b∈O+

F

∑
m|(b)

ψ(m)

 · eF (bz)

2.5. CM Forms. While in general spaces of Hilbert modular forms of partial weight one
are mysterious, we do have one source to reliably produce such forms; we can obtain them
via automorphic induction from certain Grossencharacters. Specifically, let K be a totally
imaginary quadratic extension of F and AK be the adeles of K. Consider a Grossencharacter

ψ : GL1(K)\GL1(AK)→ C×

such that the local components of ψ at the infinite places are

ψ∞1(z) = zk−1 and ψ∞2(z) = |z|k−1∞2
.

Then, by a theorem of Yoshida [10], there exists a unique Hilbert modular eigenform fψ of
weight [k, 1] such that the L-function of fψ is equal to the L-function of ψ.
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A Hilbert modular eigenform f is said to have CM if its primitive form is equal to fψ
for some character ψ. From the equality of L-functions, one observes that if p is a prime of
F which is inert in K, then the normalized Hecke eigenvalue c(p, fψ) = 0. Conversely, this
property classifies CM Hilbert modular forms. That is, if f is a Hilbert modular form of level
c and K is a totally imaginary extension of F such that c(p, f) = 0 for all primes p - c which
are inert in K, the primitive form of f is fψ for some grossencharacter ψ of K. By class field
theory, one can restate this fact as follows.

Theorem 2.2. Let f be a Hilbert modular eigenform of level c. Then f has CM if and
only if there exists a totally odd quadratic Hecke character ε of F of conductor f such that
c(p, f)ε(p) = c(p, f) for all p - cf. In this case, we say f has CM by ε.

If fψ is a newform arising from the character ψ, then the level of f is equal to ∆K/FNK/F (f(ψ))
where f(ψ) is the conductor of ψ. It follows that if f is CM form of level Γ1(c), then f has
CM by some Hecke character of condutor dividing c. There are only finitely many such Hecke
characters, and so one can verify by calculating finitely many Hecke eigenvalues of f that f
does not have CM.

2.6. The Algorithm. In this section, we outline the algorithm used to search for non-CM
modular forms of weight [k, 1].

Recall from Section 2.1, that the nonzero coefficients appearing in the Fourier expansion of
a Hilbert modular form are indexed by the totally nonnegative elements of OF . Fix a field H
and consider the ring of formal Fourier expansions over H (coefficients indexed by the totally
nonnegative elements of OF ). For any pair of integers B := (b1, b2) there is an ideal of this
ring consisting of all formal Fourier series whose Fourier coefficient cα = 0 if |α|∞1 < b1 and
|α|∞2 < b2. The ring of formal Fourier expansions (over H) truncated to bound B is defined
to be the quotient of the ring of formal Fourier expansions by this ideal.

Algorithm 1. The following is a procedure to search for weight [k, 1] modular forms. Which
on input (k, n, χ,B) consisting of

(1) k = [k, 1] a pair of odd integers,
(2) n a square free integral ideal of F,
(3) χ a totally odd ray class character of F of conductor n,
(4) B = (b1, b2) a pair of positive integers,

outputs candidate non-CM weight k, level n, character χ modular forms or finds that none
exist.

(1) Using Dembélé’s algorithm [3] (see section 2.3), compute, for each m|n, a basis for the
image of Snew

[k+1,2](Γ0(m), F ) in the ring of formal Fourier expansions over F truncated

to bound B.
(2) Using the spaces calculated in step 1 and following the procedure described in Section

2.3, compute a basis for the image S[k+1,2](Γ0(m), F ) in the ring of formal Fourier
expansions over F truncated to bound NF/Q(q) · B where q is the small prime from
Step 4.

(3) Divide each of the truncated Fourier expansions calculated in step 2 by the Fourier
expansion for E1,χ−1 described in Section 2.4. Call the space spanned by the resulting
truncated Fourier expansions V (B).

(4) Choose a small prime q, which was the principal ideal (2) in our case, and compute
Tqf for each basis element f of V (B) from the previous step.
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(5) One has now computed two spaces of Fourier expansions, V (B) and Tq(V (B)), each
of which are dimension D = dimS[k+1,2](Γ0(n)). If the the dimension of V (B) is less

than D, increase B. Compute the intersection V (2)(B) := V (B) ∩ Tq(V (B)).
(6) Compute the dimension of the subspace in S[k+1,2](Γ0(n), χ,C) spanned by CM forms

using class field theory. Denote this dimension by h.
(7) If dim(V (B) ∩ Tq(V (B))) = h, then all the forms are CM and the algorithm returns

the empty set. Otherwise the algorithm returns V (2)(B).

When the algorithm returns a nonempty output one increases the bound B and reruns the
algorithm. If the dimension stabilizes at some value greater than the dimension of the space
of CM forms after several increases in precision, one has found a candidate for a non-CM
weight k form.

All of our calculations were made for F = Q(
√

5). We first used the algorithm to calculate
the dimensions of the spaces M[3,1](Γ0(n), χ) where n is a squarefree ideal of OF and χ is a
totally odd character modulo n. We restricted ourselves to the case where n is square-free,
because the magma package used only worked in this case. Our program searched through all
squarefree n of norm less than 500 and quadratic χ, but we did not find any non-CM Hilbert
modular forms. (In fact, our calculations show that none exist in the spaces we computed.)

We next used our algorithm to calculate dimensions of M[5,1](Γ0(n), χ) for all squarefree
ideals n of norm less than 300. The only candidate space our algorithm found is described
below in Section 3. In all other spaces of modular forms, our algorithm found that all forms
were CM.

3. A non CM form

Let F = Q(
√

5). We order the infinite places of F such that |
√

5|∞1 > 0. If n = (14) ⊂ OF ,
then the ray class group of conductor n ·∞1∞2 is isomorphic to Z/6Z. Let χ be the degree 6

character such that χ(2) = −1+
√
−3

2 . It has conductor 49 and is the restriction of one of the
order 6 characters of Q with kernel Q(ζ7). In particular, χ is totally odd.

Theorem 3.1. The space of cusp forms S[5,1](Γ0(14), χ,C) is 2-dimensional and has a basis

with coefficients in H. This space has a basis over L = H(
√
−19) consisting of two conjugate

eigenforms, neither of which admit complex multiplication.

Proof. For n a positive integer, we define

b(n) :=

(
5n−

√
5n

2
,
5n+

√
5n

2

)
.

Applying Algorithm 1 with input (k, n, χ,B) = ([5, 1], 14O, χ,B) with B = b(24), b(26)

and b(28), respectively, one finds that for each value V (2)(B) is two dimensional. Table 1

lists the initial normalized Fourier coefficients of one of the truncated forms in V (2)(B).
Let f ∈ S[6,2](Γ0(14), 1, H)/E1,χ−1 be a meromorphic modular form whose Fourier expan-
sion truncated to b(28) is found in Table 1. We show f ∈ S[5,1](Γ0(14), χ,H), by showing

f3 ∈ S[15,3](Γ0(14), χ3, H). This is done in two steps.

(1) First we show the map taking a form in S[18,6](Γ0(14), H) to its Fourier expansion
truncated to bound b(28) is an injection.
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(2) Next we find a form g ∈ S[15,3](Γ0(14), χ3, H) such that the Fourier expansions of g
and f are equivalent when truncated to bound b(28).

Noting that (f3 − g)E3
1,χ ∈ S[18,6](Γ0(14), H), it follows from (1) and (2) that f3 and g are

equal.
The proofs of facts (1) and (2) are both computational. Using the magma package, one com-

putes that the space of cusp forms S[18,6](Γ0(14), H) has dimension 356. Then one computes
explicitly the Fourier expansions truncated to bound b(28) for a basis of S[18,6](Γ0(14), H)
and shows that the resulting set of tuncated formal Fourier series span a space of the same
dimension. This proves (1).

To prove (2), one must construct an element S[15,3](Γ0(14), χ3) with a desired property.
Unfortunately, the creation of spaces of Hilbert modular forms with nontrivial nebentypus
and the computation of their Fourier expansions has not yet been implemented in the magma

package. To skirt this issue, we instead use the magma package to compute the truncated to
bound b(56) Fourier expansions of the 56 dimensional space S[14,2](Γ0(14), χ3, H). One then
obtains the Fourier expansions for the forms in the subspace

E1,χ3 .S[14,2](Γ0(14), χ3, H) + T2(E1,χ3 .S[14,2](Γ0(14), χ3, H)) ⊆ S[15,3](Γ0(14), χ3)

truncated to bound b(28), in which, following a calculation in linear algebra, one finds a form
g as desired in (2). It follows S[5,1](Γ0(14), χ,C) is 2-dimensional and has a basis with elements
in H.

We now demonstrate the second claim of the proposition: that S[5,1](Γ0(14), χ,C) has a

basis over L = H(
√
−19) consisting of two conjugate eigenforms, neither of which admit com-

plex multiplication. Utilizing Algorithm 1, one computes that V (2)([5, 1], 7O, χ, b(28)) = 0 and
hence S[5,1](Γ0(14), χ,C) = Snew

[5,1](Γ0(14), χ,C). It follows S[5,1](Γ0(14), χ,C) has a basis over

C of simultaneous eigenforms for Hecke algebra. As S[5,1](Γ0(14), χ,C) has a basis defined
over H and is two dimensional, these eigenforms have as a field of definition either H or a qua-
dratic extension of H. Calculating the characteristic polynomial of T5 on S[5,1](Γ0(14), χ,C),

we obtain that the field of definition is H(
√
−19).

Finally, we see that neither of the forms in S[5,1](Γ0(14), χ,C) are CM. If this were not the
case, both forms of S[5,1](Γ0(14), χ,C) would have CM by a quadratic character of conductor

14. The unique such character is χ3. However, one observes that χ3(7+
√
5

2 ) = −1 and the 7+
√
5

2
normalized Hecke eigenvalue does not vanish for either eigenform in S[5,1](Γ0(14), χ,C). �

Remark 3.2. The Galois group Gal(L/Q) = (Z/2Z)3 acts on the Fourier expansion as
follows. The element with fixed field H permutes the two eigenforms. The element with fixed
field Q(

√
5,
√
−19) sends the eigenform to an eigenform in S[5,1](Γ0(14), χ−1,C), where χ−1

is the conjugate of χ. The element with fixed field Q(
√
−3,
√
−19) sends the eigenform to a

form in S[1,5](Γ0(14), χ,C).

See Table 1 for the normalized coefficients c(p) for various prime ideals p = (π) of small
norm for one of the two normalized eigenforms in S[5,1](Γ0(14), χ,C). If c(π) is a coefficient
in the Fourier expansion of our eigenform for a prime π, then the normalized coefficient is
c(p) = c(π)π2 as seen in (2.3). The normalized coefficient does not depend on the choice of
totally positive generator π for the ideal p = (π).

Remark 3.3. We checked that for N(p) < 1000 and N gcd((p), 14) = 1the Satake parameters
of π satisfy the Ramanujan Conjecture. Equivalently, the Hecke eigenvalues satisfy the bounds
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Table 1. Table of Normalized Coefficients of Eigenform in S[5,1](Γ0(14), χ)

π N(π) c(p), p = (π)

2 4 −4 + 4
√
−3

5+
√
5

2 5
−45 + 15

√
−3 + 15

√
−19− 15

√
57

4

3 9 −18− 18
√
−3− 9

√
−19

(
3−
√
−3

2

)
7+
√
5

2 11
−87 + 87

√
−3 + 36

√
5− 36

√
−15 + 63

√
−19− 21

√
57 + 24

√
−95− 8

√
285

4
9+
√
5

2 19
−456 + 152

√
−3 + 171

√
5− 57

√
−15 + 66

√
−19− 66

√
57− 39

√
−95 + 39

√
285

4
11+
√
5

2 29 −162 +
417

2

√
5 + 66

√
57 +

17

2

√
285

13+
√
5

2 41
(

49 + 12
√

5
)
·
(

9
√
−3 + 15

√
−19

2

)
7 49

−1715 + 1715
√
−3 + 1029

√
−19 + 1029

√
57

4

|c(p)|∞1 ≤ 2p2 and |c(p)|∞2 ≤ 2p2. The Ramanujan conjecture would follow from Deligne’s
proof of the Riemann hypothesis if one knew that π was motivic, however, the construction
of the associated Galois representations proceeds via congruences.
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