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Abstract. Given a set of integers containing no 3-term arithmetic progressions, one con-
structs a Stanley sequence by choosing integers greedily without forming such a progression.
Independent Stanley sequences are a “well-structured” class of Stanley sequences with two
main parameters: the character λ(A) and the repeat factor ρ(A). Rolnick conjectured that
for every λ ∈ N0\{1, 3, 5, 9, 11, 15}, there exists an independent Stanley sequence S(A) such
that λ(A) = λ. This paper demonstrates that λ(A) 6∈ {1, 3, 5, 9, 11, 15} for any independent
Stanley sequence S(A).

1. Introduction

Let N0 denote the set of non-negative integers. A subset of N0 is called `-free if it contains
no `-term arithmetic progression. We will frequently abbreviate “arithmetic progression”
by AP. We say a subset, or sequence of elements, of N0 is free of arithmetic progressions if
it is 3-free. In 1978, Odlyzko and Stanley [2] used a greedy algorithm (see Definition 1.1)
to produce arithmetic progression free sequences. Their algorithm produced sequences with
two distinct growth rates – those which are highly structured (Type I) and those which
are seemingly random (Type II). These classes of Stanley sequences will be more precisely
defined in Conjecture 1.3.

Definition 1.1. Given a finite 3-free set A = {a0, . . . , an} ⊂ N0, the Stanley sequence
generated by A is the infinite sequence S(A) = {a0, a1, . . . } defined by the following recursion.
If k ≥ n and a0 < · · · < ak have been defined, let ak+1 be the smallest integer a > ak such that
{a0, . . . , ak} ∪ {a} is 3-free. Though formally one writes S({a0, . . . , an}), we will frequently
use the notation S(a0, . . . , an) instead.

Remark 1.2. Without loss of generality, we may assume that every Stanley sequence begins
with 0.

In Rolnick’s investigation of Stanley sequences [3], he made the following conjecture about
the growth rate of the two types of Stanley sequences.

Conjecture 1.3. Let S(A) = (an) be a Stanley sequence. Then, for all n large enough, one
of the following two patterns of growth is satisfied:

• Type I: α/2 ≤ lim inf an/n
log2(3) ≤ lim sup an/n

log2(3) ≤ α, or
• Type II: an = Θ(n2/ ln(n)).

Though Type II Stanley sequences are mysterious, a great deal of progress has been
made in classifying Type I Stanley sequences [1]. In [3], Rolnick introduced the concept of
the independent Stanley sequence. These Stanley sequences follow Type I growth and are
defined as follows:

Definition 1.4. A Stanley sequence S(A) = (an) is independent if there exists constants
λ = λ(A) and κ = κ(A) such that for all k ≥ κ and 0 ≤ i < 2k, we have
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• a2k+i = a2k + ai
• a2k = 2a2k−1 − λ+ 1.

The constant λ is called the character, and it is easy to show that λ ≥ 0 for all independent
Stanley sequences. If κ is taken as small as possible, then a2κ is called the repeat factor.
Informally, κ is the point at which the sequence begins its repetitive behavior. Rolnick and
Venkataramana proved that every sufficiently large integer ρ is the repeat factor of some
independent Stanley sequence [4].

Rolnick also made a table [3] of independent Stanley sequences with various characters
λ ≥ 0. He found Stanley sequences with every character up to 75 with the exception of
those in the set {1, 3, 5, 9, 11, 15}. He proved that, for an independent Stanley sequence
S(A), λ(A) 6= 1, 3 [3, Proposition 2.12]. In light of his observations, he made the following
conjecture:

Conjecture 1.5 (Conjecture 2.15, [3]). The range of the character function is exactly the
set of non-negative integers λ that are not in the set {1, 3, 5, 9, 11, 15}.

In recent work, Sawhney [5] has shown that a positive density of even integers appear
as characters of independent Stanley sequences. Analyzing the character of an indepen-
dent Stanley sequence is closely related to another feature of a Stanley sequence which we
introduce now.

Definition 1.6. Given a Stanley sequence S(A), we define the omitted set O(A) to be the
set of nonnegative integers that are neither in S(A) nor are covered by S(A). For O(A) 6= ∅,
we let ω(A) denote the largest element of O(A).

Remark 1.7. The only Stanley sequence S(A) where O(A) = ∅ is S(0).

Using this definition, one can show the following lemma.

Lemma 1.8 (Lemma 2.13, [3]). If S(A) is independent, then ω(A) < λ(A).

Since max(A) > ω(A), the following corollary easily follows.

Corollary 1.9 (Corollary 2.14, [3]). At most finitely many independent Stanley sequences
exist with a given character λ.

Using this corollary, one can show that there are no independent Stanley sequences of
a given character λ by classifying every Stanley sequence with ω < λ. One can utilize
this technique to prove that λ 6= 1, 3 because every Stanley sequence with ω(A) < 3 is
independent with λ(A) 6= 1, 3. Unfortunately, this argument does not work for λ = 5
because the Stanley sequence S(0, 4) does not appear to be independent and experimentally
exhibits Type II growth. Though no Stanley sequence, including S(0, 4), has been proven
to follow Type II growth, we will prove that no independent Stanley sequence has character
λ = 1, 3, 5, 9, 11, 15 by showing sequences such as S(0, 4) cannot be independent and have
certain characters.

Theorem 1.10. Let S(A) be an independent Stanley sequence where A is a finite 3-free
subset of N0. Then λ(A) 6∈ {1, 3, 5, 9, 11, 15}.
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2. Modular sequences

In order to prove our main result, we will use the theory of modular sequences developed
in [1] and more recently studied in [6]. Modular sequences are a class of Stanley sequences
of Type I which contains all independent Stanley sequences as a strictly smaller subset.

Definition 2.1. Let A be a set of integers and z be an integer. We say that z is covered
by A if there exist x, y ∈ A such that x < y and 2y − x = z. We frequently say that z is
covered by x and y.

Suppose that N is a positive integer. If x, y, z ∈ {0, . . . , N − 1} and x 6= y, we say they
form an arithmetic progression modulo N , or a mod-AP if 2y − x ≡ z (mod N).

Suppose again that N is a positive integer and A ⊆ {0, . . . , N − 1}. Then, we say that z
is covered by A modulo N , or mod-covered, if there exist x, y ∈ A with x < y such that x, y, z
form an arithmetic progression modulo N .

Definition 2.2. Fix a positive integer N ≥ 1. Suppose the set A ⊂ {0, . . . , N−1} containing
0 is 3-free modulo N , and all x ∈ {0, . . . , N − 1}\A are covered by A modulo N . Then A
is said to be a modular set modulo N and S(A) is said to be a modular Stanley sequence
modulo N .

Observe that the modulus N of a modular Stanley sequence is analagous to the repeat
factor ρ of an independent Stanley sequence. One can make this statement more precise in
the following proposition:

Proposition 2.3 (Proposition 2.3, [1]). Suppose A is a finite subset of N0 and suppose S(A)
is an independent Stanley sequence with repeat factor ρ. Then S(A) is a modular Stanley
sequence modulo 3` · ρ for some integer ` ≥ 0.

Remark 2.4. One can show that the modulus of a modular Stanley sequence is well-defined
up to a power of 3.

Definitions made about independent Stanley sequences generalize nicely to modular Stan-
ley sequences.

Definition 2.5. Suppose that A is a modular set moduloN . Define λ(A) = 2·max(A)−N+1
and define ω(A) to be the largest element x ∈ {0, 1, . . . , N − 1}\A such that x is covered by
A modulo N but x is not covered by A.

The definitions of λ and ω coincide with the corresponding definitions for an independent
Stanley sequence when S(A) is an independent Stanley sequence.

Remark 2.6. Throughout this paper, we will repeatedly use the fact that, for a modular set
A modulo N , every element x ∈ {0, 1, . . . , N − 1}\A, such that x > ω(A), is covered by A
(and not merely mod-covered by A).

3. Proof of Main Result

Theorem 3.1. If A is a modular set modulo N ∈ N, then λ(A) 6∈ {1, 3, 5, 9, 11, 15}.

Observe that this result implies Theorem 1.10 since every independent Stanley sequence
is a modular Stanley sequence.
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The proof of Theorem 3.1 has been broken up into several more manageable results in-
cluding Lemma 3.3, Lemma 3.5, Proposition 3.7, Proposition 3.10, Proposition 3.15, and
Proposition 3.22. The proofs of Lemmas 3.3 and 3.5 and Proposition 3.7 are more detailed
in order to give the reader better guidance in understanding the various proof techniques.
The later lemmas and propositions omit some details for brevity.

Lemma 3.2, though simple, will prove invaluable.

Lemma 3.2. Suppose that A = {a0, . . . , an} with 0 = a0 < · · · < an is a modular set
modulo N for some N ∈ N. If ak > ω(A), then A = S(a0, . . . , ak) ∩ {0, 1, . . . , N − 1} and
S(A) = S(a0, . . . , ak).

Proof. If x ∈ N with x ≤ ak then x ∈ A if and only if x ∈ {a0, . . . , ak}. Therefore
S(a0, . . . , ak) ∩ {0, 1, . . . , ak} = A ∩ {a0, . . . , ak}. Now we proceed by induction. Suppose
that S(a0, . . . , ak) ∩ {0, 1, . . . , am} = A ∩ {0, 1, . . . , am} for some k ≤ m < n. If z ∈ N and
am < z < am+1 then z 6∈ A and z > ω(A). Therefore, there exist ai, aj ∈ A with ai < aj
such that ai, aj, z form an AP. Since i, j ≤ m we see that ai, aj ∈ S(a0, . . . , ak) and there-
fore z 6∈ S(a0, . . . , ak). The greedy algorithm then dictates that am+1 ∈ S(a0, . . . , ak) and
S(a0, . . . , ak) ∩ {0, 1, . . . , am+1} = A ∩ {0, 1, . . . , am+1}. By induction we have shown that
S(a0, . . . , ak) ∩ {0, 1, . . . , N − 1} = A and S(a0, . . . , ak) = S(A). �

We begin by proving a few simple lemmas. In all of these lemma, the character being
investigated is odd, thus the modulus is required to be even (see Definition 2.5). Therefore,
we will only consider modular sets with modulus 2N for some N ∈ N.

3.1. Characters λ = 1, 3.

Lemma 3.3. There does not exist a modular set A modulo 2N with λ(A) = 1.

Proof. Let A be a modular set with modulus 2N where N ∈ N and λ(A) = 1. Using the
definition of λ, one finds that max(A) = N . Contradiction. Every modular set contains 0;
therefore, A contains the mod 2N arithmetic progression 0, N, 0. �

Remark 3.4. The proof of Lemma 3.3 relied on the fact that if a modular set has modulus
2N and x ∈ A then x+N (mod 2N) 6∈ A. We will use this fact repeatedly throughout the
proofs of the following statements.

Lemma 3.5. There does not exist a modular set A modulo 2N with λ(A) = 3.

Proof. Let A be a modular set with modulus 2N where N ∈ N and λ(A) = 3. One deduces
that max(A) = N + 1 from the definition of λ and 1, N 6∈ A by Remark 3.4. Since 1 6∈ A, it
must be mod-covered by A by the definition of a modular set. That is, there exist x, y ∈ A
with x < y such that 2y−x ≡ 1 (mod 2N). Since 0 < y < 2N , one deduces that 2y−x = 1
or 2N + 1. Since y > 1 we also know that 2y − x ≥ y + 1 > 1 and therefore 2y − x 6= 1. If
y < N , then 2y − x < 2N − x < 2N + 1. Therefore, if 2y − x = 2N + 1, then y ≥ N and
y = N + 1 = max(A) necessarily. Finally, if y = N + 1, then 2y − (2N + 1) = x = 1 ∈ A, a
contradiction. �

Lemmas 3.3 and 3.5 were proven by Rolnick [3] in the case of independent Stanley se-
quences. We have proved these statements here as a warm-up for the upcoming more involved
proofs.
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Remark 3.6. In [1], an operation was introduced that allows one to combine the modular
sets. If A and B are modular sets modulo N and M then A⊗B := A+N ·B is a modular
set modulo NM with λ(A ⊗ B) = λ(A) + N · λ(B). Through the following proofs, we will
assume that N is “large.” Let {0, 1} be the modular set of modulus 3 with character 0. If
A is a modular set modulo 2N then A ⊗ {0, 1} is a modular set modulo 3 · 2N with the
same character λ. Thus, if we show that there is no modular set A with odd character λ
of modulus 2N where N > 100 (or any fixed number), then we have shown there exist no
modular sets A of character λ.

3.2. Character λ = 5.

Proposition 3.7. There does not exist a modular set A modulo 2N with λ(A) = 5.

We will break the proof of Proposition 3.7 into Lemmas 3.8 and 3.9.

Lemma 3.8. Let A be a modular set modulo 2N with λ(A) = 5. Then, N + 1 6∈ A.

Proof. Suppose that N + 1 ∈ A. Observe that max(A) = N + 2 and 2 is mod-covered by
0, N+1, 2 and 1, N 6∈ A. Since 1 6∈ A, there exist x, y ∈ A with x < y such that x, y, 1 form a
mod-AP. Since y > 0, we deduce that 2y−x = 2N + 1 which further implies that y = N + 2
and x = 3. Since we now have 3 ∈ A, we see that A = S(0, 3, 5)∩{0, 1, . . . , 2N−1} by Lemma
3.2 and therefore S(A) = S(0, 3, 5). A quick computation shows that S(0, 3, 5) = S(B) where
B = {0, 3, 5, 8}, a modular set modulo 9 with character λ(B) = 8. Therefore, λ(A) = 8 since
S(A) = S(B). Contradiction. �

Lemma 3.9. There does not exist a modular set A of modulus 2N and λ(A) = 5 with
N + 1 6∈ A.

Proof. Let A be a modular set modulo 2N with λ(A) = 5 and N + 1 6∈ A. Observe that
max(A) = N + 2 and 2 6∈ A. Since 2 6∈ A, there exist x, y ∈ A that mod-cover 2. A quick
computation shows that we require x = 0 and y = 1. Thus 1 ∈ A and we see that 3 is
mod-covered by 1, N + 2, 3 and 4 is mod-covered by 0, N + 2, 4. Is 5 ∈ A? If not, then there
exist x, y ∈ A that cover 5 mod 2N since 5 > ω(A). This is impossible and thus 5 ∈ A.
Hence, S(A) = S(0, 1, 5) = {0, 1, 5, 6, 8, 13, . . . } by Lemma 3.2.

Since N is “big,” we know that 2N−1, 2N−2, 2N−3, 2N−4, . . . , N+3 6∈ A. Hence, these
numbers are mod-covered by A and are in fact covered by A since ω(A) < 5. We see that
2N −1 is covered by 5, N + 2 and 2N −2 is covered by 6, N + 2. However, we can only cover
2N−3 by 1, N−1 which implies N−1 ∈ A. We see 2N−4 is covered by 8, N +2. We know
2N−5 6∈ A and is therefore covered by x, y ∈ A with x < y. We see that y 6= N+2 otherwise
9 ∈ A, a contradiction. We also see that y 6= N − 1 otherwise 3 ∈ A, a contradiction. We
could cover 2N − 5 by 1, N − 2, but this is a contradiction because then A contains the
mod-AP N − 2, 0, N + 2. Hence, y < N − 2. However, 2N − 5 = 2y − x ≤ 2(N − 3) + x, a
contradiction.

Therefore, there does not exist a modular set A of modulus 2N with λ(A) = 5 with
N + 1 6∈ A. �

The techniques from Lemmas 3.8 and 3.9 will be used repeatedly in the following propo-
sitions and lemmas.
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3.3. Character λ = 9.

Proposition 3.10. There does not exist a modular set A modulo 2N with λ(A) = 9.

We break the proof of Proposition 3.10 into Lemmas 3.11, 3.12, 3.13, and 3.14. Through
case by case analysis, we will eliminate all possible sets A.

Lemma 3.11. Let A be a modular set modulo 2N with λ(A) = 9. Then N + 3 6∈ A.

Proof. Suppose that N + 3 ∈ A. Since N + 4 = max(A), we see that N + 2 6∈ A otherwise A
would contain the AP N + 2, N + 3, N + 4. We also see that 3, 4 6∈ A and 6 is mod-covered
by 0, N + 3 and 8 is mod-covered by 0, N + 4. The only way to mod-cover 3 is with 5, N + 4
and every valid way to mod-cover 4 requires 2; hence, 2, 3 ∈ A. Since 0, 2 ∈ A, we see that
N + 1 6∈ A. There is no way to mod-cover 7, so 7 ∈ A. We see that 9 is covered by 5, 7 and
10 is covered by 0, 5. However, 11 cannot be covered, so 11 ∈ A and thus we have deduced
that S(A) = S(0, 2, 5, 7, 11) = {0, 2, 5, 7, 11, 13, 16, 18, 28, . . . }.

Now we examine how 2N −1, 2N −2, . . . are covered by A. We see that 2N −1 is covered
by 7, N + 3 but the only way to cover 2N − 2 is with 0, N − 1. Hence, N − 1 ∈ A. Similar
analysis shows that 2N−3 is covered by 11, N+4, the element 2N−4 is covered by 2, N−1,
and the element 2N − 5 is covered by 11, N + 3. However, 2N − 6 cannot be covered by
x < y using y = N + 4, N + 3 or N − 1. We see that y = N − 3 and y = N − 2 are the only
possible remaining choices. However, N − 3 cannot be in A, otherwise A contains the AP
N − 3, 0, N + 3. Therefore, y = N − 2 and x = 2 which implies that N − 2 ∈ A.

Further analysis shows that 2N − 7, . . . , 2N − 13 are covered by A. However, 2N − 14
cannot be covered by x, y ∈ A with y ∈ {N − 2, N − 1, N + 3, N + 4}. Therefore, y ∈
{N−7, N−6, N−5, N−4, N−3}. However, N−3, N−4 6∈ A by Remark 3.4. Furthermore,
N − 5 6∈ A otherwise A would contain the AP N − 5, N − 1, N + 3. Similarly, one deduces
that N − 6, N − 7 6∈ A. Contradiction. �

Lemma 3.12. Let A be a modular set modulo 2N with λ(A) = 9 and N + 3 6∈ A. Then
N + 1 6∈ A.

Proof. Suppose that N + 1 ∈ A. We see that 2 and 8 are mod-covered by A and that
1, 4 6∈ A. The only way to mod-cover 4 is with 0, N + 2; therefore, N + 2 ∈ A. Observe that
3 6∈ A otherwise A would contain the mod-AP N + 2, 3, N + 4. Therefore, the only way to
mod-cover 1 is with 7, N + 4 which implies 7 ∈ A. The only way to mod-cover 3 is with
5, N + 4 which implies 5 ∈ A. Since 5, 7 ∈ A, we see that 6 6∈ A yet unfortunately 6 cannot
be mod-covered by A. Contradiction. �

Lemma 3.13. Let A be a modular set modulo 2N with λ(A) = 9 and N + 1, N + 3 6∈ A.
Then N + 2 6∈ A.

Proof. Suppose that N + 2 ∈ A. We see that 4, 8 are mod-covered by A and 2 6∈ A. Also
observe that 3 6∈ A since otherwise A would contain the mod-AP N + 2, 3, N + 4. We see
that 5, 6 ∈ A since there is no way to mod-cover them. Therefore, 3, 4, 7 are mod-covered
by A. This leaves us with no way to mod-cover 1, so 1 ∈ A. We see that 9, 10, 11, 12 are
covered and 13 cannot be covered by A. Therefore, 13 ∈ A and S(A) = S(0, 1, 5, 6, 13).

Observe that 2N − 1 is covered by 5, N + 2 and 2N − 2 is covered by 6, N + 2 and
2N − 3. However, neither N + 2 nor N + 4 may be used to cover 2N − 3. Therefore, 2N − 3
is necessarily covered by 1, N − 1 which implies N − 1 ∈ A. However, we again deduce
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that N − 1, N + 2, N + 4 cannot cover 2N − 4. The only way to cover 2N − 4 requires
N − 2 ∈ A. This is a contradiction since including N − 2 in A would introduce the mod-AP
N − 2, 0, N + 2. �

Lemma 3.14. There does not exist a modular set A of modulus 2N and λ(A) = 9 with
N + 1, N + 2, N + 3 6∈ A.

Proof. Let A be a modular set modulo 2N with λ(A) = 9 and N + 1, N + 2, N + 3 6∈ A.
We see that 8 is mod-covered by A and 4 6∈ A. The element 2 is necessarily in A in order
to mod-cover 4. The element 7 ∈ A is needed to mod-cover 1. We break our proof into the
cases where either (Case I) 3 ∈ A or (Case II) 5 ∈ A.

Case I: Since 3 ∈ A, we see that 5 is mod-covered by A and 9 ∈ A since it cannot be
mod-covered by A. We deduce that S(A) = S(0, 2, 3, 7, 9) = {0, 2, 3, 7, 9, 10, 19, . . . }. Now,
2N − 1 is covered by 9, N + 4 and 2N − 2 is covered by 10, N + 4. However, 2N − 3 cannot
be covered using N + 4 and can only be covered by 1, N − 1. This is a contradiction since
1 6∈ A.

Case II: Since 5 ∈ A, we see that 3, 9, 10 are mod-covered by A and 11 cannot be mod-
covered by A. Therefore, 11 ∈ A and S(A) = S(0, 2, 5, 7, 11). Since 9 6∈ A, we cannot use
N + 4 to cover 2N − 1. Hence 2N − 1 cannot be covered, a contradiction.

Therefore, a modular set A of modulus 2N with λ(A) = 9 and N + 1, N + 2, N + 3 6∈ A
cannot exist. �

3.4. Character λ = 11. Throughout the remainder of the paper, we will frequently write
“covered” or “mod-covered” to mean “covered by A” or “mod-covered by A.”

Proposition 3.15. There does not exist a modular set A modulo 2N with λ(A) = 11.

We break the proof of Proposition 3.15 into Lemmas 3.16, 3.17, 3.18, 3.19, 3.20, and 3.21.
When λ(A) = 11, observe that max(A) = N + 5.

Lemma 3.16. Let A be a modular set modulo 2N with λ(A) = 11 with N + 2 ∈ A. Then
N + 4 6∈ A.

Proof. Assume N + 4 ∈ A. Observe that 4, 8, 10 are mod-covered and 2, 3, 5, N + 3 6∈ A.
Contradiction. There is no way to mod-cover 5. �

Lemma 3.17. Let A be a modular set modulo 2N with λ(A) = 11 with N + 2 6∈ A. Then
N + 4 6∈ A.

Proof. Assume N + 4 ∈ A. Observe that 8, 10 are mod-covered and 4, 5, N + 3 6∈ A. We see
that 3 ∈ A is needed to mod-cover 5 and thus 6, 7 are also mod-covered. Since 2 is required
to mod-cover 4, we have 2 ∈ A and 1 6∈ A. We need 9 ∈ A to mod-cover 1 and 11 ∈ A since
it cannot be mod-covered. Therefore, S(A) = S(0, 2, 3, 9, 11), a modular Stanley sequence
with character 20. This is a contradiction with λ(A) = 11. �

Observe that Lemmas 3.16 and 3.17 imply that a modular setAmodulo 2N with λ(A) = 11
cannot contain the element N + 4.

Lemma 3.18. Let A be a modular set modulo 2N with λ(A) = 11 with N + 4 6∈ A. Then
N + 2 6∈ A.
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Proof. Assume N + 2 ∈ A. Observe that 4, 10 are mod-covered and 2, 5 6∈ A. Every possible
mod-cover of 5 includes 1, so 1 ∈ A and therefore 2, 3, 9 are also mod-covered. We then see
that N + 3 ∈ A is required to mod-cover 5. Therefore, N + 1 6∈ A and 6 is mod-covered. We
cannot mod-cover 7, 8, 11, so they are elements of A. Therefore, S(A) = S(0, 1, 7, 8, 11).

We see that 2N−1, 2N−2, . . . , 2N−9 are covered. However, we must include an additional
element into A in order to cover 2N − 10. The possible candidates are N − 5, N − 4, N −
3, N−2, N−1. However, N−5, N−3, N−2, N−1 are not allowed for they would introduce
a mod-AP into A. Therefore, 2N − 10 is covered by 2, N − 4. This is a contradiction with
2 6∈ A. �

Lemma 3.19. Let A be a modular set modulo 2N with λ(A) = 11 with N + 2, N + 4 6∈ A.
Then N + 3 6∈ A.

Proof. Assume N + 3 ∈ A. Observe that 6, 10 are mod-covered and 3, 4, 5, N + 1 6∈ A. We
require 1 ∈ A to mod-cover 5, so 1 ∈ A and therefore 2, 9 are also mod-covered. This is a
contradiction since there is no way to mod-cover 4. �

Lemma 3.20. Let A be a modular set modulo 2N with λ(A) = 11 with N+2, N+3, N+4 6∈
A. Then N + 1 6∈ A.

Proof. Assume N + 1 ∈ A. Observe that 2, 10 are mod-covered and 1, 3, 5 6∈ A. There is no
way to mod-cover 5 6∈ A. Contradiction. �

Lemma 3.21. There does not exist a modular set A of modulus 2N and λ(A) = 11 with
N + 1, N + 2, N + 3, N + 4 6∈ A.

Proof. Let A be a modular set modulo 2N with λ(A) = 11 and N+1, N+2, N+3, N+4 6∈ A.
Observe that 10 is mod-covered and 5 6∈ A. We see that 5 must be covered by (Case I) 1, 3
or (Case II) 3, 4. In both cases, 3 ∈ A, so 6 and 7 are mod-covered.

Case I: In this case 1 ∈ A which implies, 2, 4, 9 are mod-covered. We see that 4 ∈ A since
it cannot be mod-covered, so 8 is covered. Since 11 also cannot be mod-covered, we have
11 ∈ A and S(A) = S(0, 1, 3, 4, 11).

Case II: In this case 4 ∈ A which implies 5, 6, 8 are mod-covered and 2 6∈ A. We see that 1
is required to cover 2 and in turn 2, 7, 9 are mod-covered. Since 11 cannot be mod-covered,
we have 11 ∈ A and S(A) = S(0, 1, 3, 4, 11).

In both these cases, we have S(A) = S(0, 1, 3, 4, 11). Now, we examine how A covers 2N−
1, 2N−2, . . . . The elements 2N−1, 2N−2 are covered by 11, N+5 and 12, N+5. However,
2N−3 requires N−1 ∈ A. Using similar reasoning, one observes that 2N−4, 2N−5, 2N−6
are covered. However, covering 2N − 7 requires N − 2 or N − 3. We cannot include N − 3 in
A otherwise it would contain the mod-AP N −3, 1, N + 5. Therefore, N −2 ∈ A and 2N −7
is covered by 3, N − 2. We see that 2N − 8 is covered but 2N − 9 requires N − 4 ∈ A. Even
after including N − 4 ∈ A, we need N − 5 to cover 2N − 10. This is a contradiction since
the set A would then include the mod-AP N − 5, 0, N + 5.

Therefore, there does not exist a modular set of modulus 2N with λ(A) = 11 and N +
1, N + 2, N + 3, N + 4 6∈ A. �
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3.5. Character λ = 15.

Proposition 3.22. There does not exist a modular set A modulo 2N with λ(A) = 15.

We break the proof of Proposition 3.22 into Lemmas 3.23 through 3.40. When λ(A) = 15,
observe that max(A) = N + 7.

Lemma 3.23. Let A be a modular set modulo 2N with λ(A) = 15 with N + 1 ∈ A. Then
N + 3 6∈ A.

Proof. Suppose N+3 ∈ A. Then 2, 6, 14 are mod-covered and 1, 3, 7, N−7, N−4, N−3, N−
1, N+2, N+4, N+5 6∈ A. Necessarily 7 is mod-covered by 5, N+6 ∈ A; therefore, 1, 9, 10, 12
are mod-covered and N−4, N−6 6∈ A. We need 11 ∈ A to mod-cover 3 which implies 8 6∈ A.
Furthermore, 13 ∈ A since it cannot be mod-covered. We see that 4 ∈ A in order to cover 8.
We then see that S(A) = S(0, 4, 5, 11, 13, 16). One computes that 2N − 1, . . . , 2N − 11 are
covered. However, 2N − 12 and therefore must be covered by x < y with x, y ∈ A. However,
y = N − 2 necessarily which implies x = 8, a contradiction with 8 6∈ A. �

Lemma 3.24. Let A be a modular set modulo 2N with λ(A) = 15 with N + 1 ∈ A and
N + 3 6∈ A. Then N + 5 6∈ A.

Proof. Assume N + 5 ∈ A. Then N + 4, N + 6 6∈ A and 2, 10, 14 are mod-covered and
1, 3, 4, 5, 6, 7 6∈ A. This is a contradiction since it is impossible to mod-cover 7. �

Lemma 3.25. Let A be a modular set modulo 2N with λ(A) = 15 with N + 1 ∈ A and
N + 3, N + 5 6∈ A. Then N + 6 6∈ A.

Proof. Assume N + 6 ∈ A. Then 2, 12, 14 are mod-covered and 1, 4, 6, 7, N − 1, N + 4 6∈ A.
We need 5 ∈ A in order to mod-cover 7 which implies 7, 9, 10 are mod-covered. We see that
8 ∈ A since it cannot be mod-covered and therefore 4, 6, 11 are mod-covered. Similarly, 3
cannot be mod-covered, so 3 ∈ A and thus 13 is mod-covered. Lastly, N + 2 ∈ A necessarily
to mod-cover 1.

Observe that S(A) = S(0, 3, 5, 8, 15) = {0, 3, 5, 8, 15, 17, 18, 20, . . . }. However, there is no
way to cover 2N − 2 6∈ A. Contradiction. �

Lemma 3.26. Let A be a modular set modulo 2N with λ(A) = 15 with N + 1 ∈ A and
N + 3, N + 5, N + 6 6∈ A.

Proof. Assume N + 2 ∈ A. Then 2, 4, 14 are mod-covered and 1, 7, N + 4 6∈ A. Observe
that 3, 5 ∈ A necessarily to cover 7. Therefore, 1, 6, 7, 9, 10, 11 are mod-covered. We see that
8 ∈ A since it cannot be mod-covered. Therefore, 13 is mod-covered. Lastly, 12 ∈ A since it
cannot be covered.

Therefore, S(A) = S(0, 3, 5, 8, 12, 15). We know that N − 1 6∈ A otherwise this would
introduce mod-AP. However, this leaves us with no way to cover 2N − 2. Contradiction. �

Lemma 3.27. There does not exist a modular set A modulo 2N with λ(A) = 15 and N+1 ∈
A and N + 2, N + 3, N + 5, N + 6 6∈ A.

Proof. Suppose A is such a modular set. We see that 2, 14 are mod-covered and 1, 7 6∈ A.
Furthermore, 5 ∈ A is needed to cover 7 and 13 ∈ A is needed to mod-cover 1. Therefore,
9, 10 are covered. In order to mod-cover 7, we require either (Case I) 3 ∈ A or (Case II)
6 ∈ A.
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Case I: Assume 3 ∈ A, then 6, 7, 11 are mod-covered and 4 6∈ A. This is a contradiction
since there is no way to mod-cover 4.

Case II: Assume 6 ∈ A, then 7, 8, 12 are mod-covered and 3, 4 6∈ A. This is a contradiction
since there is no way to mod-cover 4.

Therefore, there does not exist a modular set A modulo 2N with λ(A) = 15 such that
N + 1 ∈ A and N + 2, N + 3, N + 5, N + 6 6∈ A. �

Observe that Lemmas 3.23, 3.24, 3.25, 3.26, and 3.27 imply that N + 1 6∈ A for a modular
set A modulo 2N with character λ(A) = 15.

Lemma 3.28. Let A be a modular set modulo 2N with λ(A) = 15 with N + 5 ∈ A and
N + 1 6∈ A. Then N + 4 6∈ A.

Proof. Suppose N + 4 ∈ A. Then 8, 10, 14 are mod-covered and 4, 5, 6, 7, N + 3, N + 6 6∈ A.
In order to mod-cover 7, we require either (Case I) 1 ∈ A or (Case II) 3 ∈ A.

Case I: Assume 1 ∈ A, then 2, 7, 9, 13 are mod-covered. We see N + 2 ∈ A necessarily
to mod-cover 4 and thus 3 is mod-covered. This is a contradiction since there is no way to
mod-cover 5.

Case II: Assume 3 ∈ A, then 5, 6, 7, 11 are mod-covered and N −1, N + 2 6∈ A. We require
2 ∈ A to cover 4 Therefore, 1 6∈ A and 12 is mod-covered. We see 13 ∈ A since it cannot be
mod-covered which implies 1 is mod-covered. Lastly 9 ∈ A since it cannot be mod-covered.

Therefore, S(A) = S(0, 2, 3, 9, 13, 19). We see that N − 1 is needed to cover 2N − 2. This
is a contradiction with N − 1 6∈ A. �

Lemma 3.29. Let A be a modular set modulo 2N with λ(A) = 15 with N + 5 ∈ A and
N + 1, N + 4 6∈ A. Then N + 2 6∈ A.

Proof. Suppose N + 2 ∈ A. Then 4, 10, 14 are mod-covered and 2, 5, 6, 7, N + 3, N + 6 6∈ A.
We need 3 ∈ A to mod-cover 7 and therefore 1, 6, 11 are also mod-covered. We deduce
9 ∈ A to mod-cover 5 and then deduce 8 ∈ A since it cannot be mod-covered. Hence,
2, 13 are mod-covered. Lastly, 12 ∈ A since it cannot be mod-covered. Therefore, S(A) =
S(0, 3, 8, 9, 12, 17). However, 2N − 1 cannot be covered. Contradiction. �

Lemma 3.30. There does not exist a modular set A modulo 2N with λ(A) = 15 with
N + 5 ∈ A and N + 1, N + 2, N + 4 6∈ A.

Proof. Suppose A is such a modular set. Observe that 10, 14 are mod-covered and 5, 6, 7, N+
3, N+6 6∈ A. In order to mod-cover 7, we require either (Case I) 1, 4 ∈ A or (Case II) 3 ∈ A.

Case I: Assume 1, 4 ∈ A. Therefore, 2, 6, 7, 8, 9, 13 are mod-covered. We require 3 ∈ A to
mod-cover 5. Therefore, 11 is mod-covered and N − 1 6∈ A. We have 12 ∈ A since it cannot
be mod-covered. We deduce that S(A) = S(0, 1, 3, 4, 12, 15). This is a contradiction since
one cannot cover 2N − 3.

Case II: Assume 3 ∈ A. Observe that 6, 7, 11 are mod-covered and N − 1 6∈ A. We break
this case into the following four subcases: (Case II.1) 2, 9 ∈ A, (Case II.2) 9 ∈ A and 2 6∈ A,
(Case II.3) 9 6∈ A and 1 ∈ A, and (Case II.4) 1, 9 6∈ A.
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Case II.1: In this case 2, 9 ∈ A. We see that 1, 4, 5, 8, 12 are mod-covered and 13 ∈ A since
it cannot be mod-covered. We deduce that S(A) = S(0, 2, 3, 9, 13, 19). This is a contradiction
since there is no way to cover 2N − 1.

Case II.2: In this case 9 ∈ A and 2 6∈ A. We see that 1, 5 are mod-covered. We see
that 12 ∈ A in order to mod-cover 2. We deduce 4 ∈ A since it cannot be mod-covered
which implies 8 is mod-covered. Lastly, 13 ∈ A since it cannot be mod-covered. There-
fore, S(A) = S(0, 3, 4, 9, 12, 13, 16) and thus S(A) is an independent Stanley sequence with
character λ(A) = 24. This is a contradiction with λ(A) = 15.

Case II.3: In this case 1 ∈ A, 9 6∈ A and thus 2, 5, 9, 13 are mod-covered. We see that 4 ∈ A
since it cannot be mod-covered and thus 8 is mod-covered. Lastly, we include 12 ∈ A since it
cannot be mod-covered. Therefore, S(A) = S(0, 1, 3, 4, 12, 15). This is a contradiction since
there is no way to cover 2N − 3.

Case II.4: In this case 3 ∈ A and 1, 9 6∈ A. We see that 6, 7, 11 are mod-covered. We
require 4 ∈ A to cover 5. Therefore, 5, 8 are covered and 2 6∈ A. This is a contradiction since
there is no way to mod-cover 9.

Therefore, there does not exist a modular set A modulo 2N with λ(A) = 15 such that
N + 5 ∈ A and N + 1, N + 2, N + 4 6∈ A. �

Observe that Lemmas 3.28, 3.29, and 3.30, along with previous results, imply that N+5 6∈
A for a modular set A modulo 2N with character λ(A) = 15.

Lemma 3.31. Let A be a modular set modulo 2N with λ(A) = 15 with N + 3 ∈ A and
N + 1, N + 5 6∈ A. Then N + 4 6∈ A.

Proof. Suppose N + 4 ∈ A. Then 6, 8, 14 are mod-covered and 3, 4, 5, 7 6∈ A. We need
1 ∈ A to mod-cover 7 and therefore 2, 5, 7, 13 are mod-covered. We see that 9, 10 are in A
since they cannot be mod-covered and thus 4, 11 are mod-covered. We need N + 6 ∈ A to
mod-cover 3 which implies 12 is also mod-covered. Thus S(A) = S(0, 1, 9, 10, 15) and S(A)
is an independent Stanley sequence with character λ(A) = 24. This is a contradiction with
λ(A) = 15. �

Lemma 3.32. Let A be a modular set modulo 2N with λ(A) = 15 with N + 3 ∈ A and
N + 1, N + 4, N + 5 6∈ A. Then N + 2 6∈ A.

Proof. Suppose N + 2 ∈ A. Then 4, 6, 14 are mod-covered and 2, 3, 5, 7 6∈ A. This is a
contradiction since there is no way to mod-cover 7. �

Lemma 3.33. There does not exist a modular set A modulo 2N with λ(A) = 15 with
N + 3 ∈ A and N + 1, N + 2, N + 4, N + 5 6∈ A.

Proof. We see that 6, 14 are mod-covered and 3, 5, 7, N − 1 6∈ A. We divide the argument
into the cases where either (Case I) 11 ∈ A or (Case II) 11 6∈ A.

Case I: In this case, 3 is mod-covered. We see that 1, 4 ∈ A in order to mod-cover 7.
Therefore, 2, 5, 6, 7, 8, 10, 13 are mod-covered and N + 6 6∈ A. We see that 9, 12 ∈ A since
they cannot be mod-covered. Therefore, S(A) = S(0, 1, 4, 11, 12, 16). This is a contradiction
since we cannot cover 2N − 1.

Case II: We need 9, N + 6 ∈ A to mod-cover 3 and therefore 5, 12 are also mod-covered.
We require 1, 4 ∈ A in order to mod-cover 7. Therefore, 2, 8, 10, 11, 13 are also mod-covered
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and N − 5, N − 4 6∈ A. Hence, S(A) = S(0, 1, 4, 9, 15). This is a contradiction since there is
no way to cover 2N − 11.

Therefore, there does not exist a modular set A modulo 2N with λ(A) = 15 such that
N + 3 ∈ A and N + 1, N + 2, N + 4, N + 5 6∈ A. �

Observe that Lemmas 3.31, 3.32, and 3.33 imply that N + 3 6∈ A for a modular set A
modulo 2N with character λ(A) = 15.

Lemma 3.34. Let A be a modular set modulo 2N with λ(A) = 15 with N + 2 ∈ A and
N + 1, N + 3, N + 5 6∈ A. Then N + 4 6∈ A.

Proof. Suppose N+4 ∈ A. Then 4, 8, 14, N+6 are mod-covered and 2, 3, 7, N−2, N−3 6∈ A.
We break our proof into the cases where either (Case I) 1 ∈ A or (Case II) 1 6∈ A.

Case I: Suppose 1 ∈ A. Then 2, 3, 7, 13 are mod-covered. We then have two further
subcases: (Case I.1) 5 ∈ A and (Case I.2) 5 6∈ A.

Case I.1: If 5 ∈ A, then 9, 10 are mod-covered. We see that 6 ∈ A since it cannot be
mod-covered and thus 11, 12 are mod-covered. Hence, S(A) = S(0, 1, 5, 6, 15). We see that
N − 1 ∈ A is necessary to mod-cover 2N − 3. This is a contradiction since there is no way
to cover 2N − 6.

Case I.2: If 5 6∈ A, then 9 ∈ A is needed to mod-cover 5. We see that 6 ∈ A since it
cannot be mod-covered which implies 11, 12 are covered. Lastly, 10 ∈ A since it cannot be
mod-covered. Therefore, S(A) = S(0, 1, 6, 9, 10, 15), an independent Stanley sequence with
character λ(A) = 24. This is a contradiction with λ(A) = 15.

Case II: If 1 6∈ A, then one requires 5, 6 ∈ A to mod-cover 7 and therefore 2, 3, 7, 9, 10, 12
are mod-covered. We require 13 ∈ A to mod-cover 1. Lastly, 11 ∈ A since it cannot be
mod-covered. Therefore, S(A) = S(0, 5, 6, 11, 13, 18). This is a contradiction since there is
no way to cover 2N − 6. �

Lemma 3.35. Let A be a modular set modulo 2N with λ(A) = 15 with N + 2 ∈ A and
N + 1, N + 3, N + 4, N + 5 6∈ A. Then N + 6 6∈ A.

Proof. Suppose N + 6 ∈ A, then 4, 12, 14 are mod-covered and 2, 6, 7, N − 3, N − 2 6∈ A.
We see that 5 ∈ A in order to cover 7 and therefore 7, 9, 10 are mod-covered. We conclude
that 8 ∈ A since it cannot be mod-covered which implies 6, 11 are mod-covered. We need
1 ∈ A to cover 2. Hence, 2, 3, 13 are mod-covered and N − 4, N − 5 6∈ A. Therefore,
S(A) = S(0, 1, 5, 8, 17).

We need N − 1 ∈ A to cover 2N − 2. This is a contradiction since there is no way to cover
2N − 11. �

Lemma 3.36. There does not exist a modular set A modulo 2N with λ(A) = 15 with
N + 2 ∈ A and N + 1, N + 3, N + 4, N + 5, N + 6 6∈ A.

Proof. Suppose A is such a modular set. We see that 4, 14 are mod-covered and 2, 7, N −
3, N − 2 6∈ A. We need 5 ∈ A to mod-cover 7 and thus 9, 10 6∈ A. We now break the
argument up into the cases where either (Case I) 1 ∈ A or (Case II) 1 6∈ A.

Case I: Suppose 1 ∈ A. Then 2, 3, 13 are mod-covered and N − 5 6∈ A. We see that 6 ∈ A
to cover 7 and thus 8, 11, 12 are also mod-covered. Therefore, S(A) = S(0, 1, 5, 6, 15). We
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require N − 1 ∈ A in order to cover 2N − 3. This is a contradiction since there is no way to
cover 2N − 6.

Case II: Suppose 1 6∈ A. We need 12 ∈ A to mod-cover 2 and thus 6 6∈ A. We need 3 ∈ A to
mod-cover 7 which implies 1, 6, 11 are mod-covered and N − 1 6∈ A. We see that 8 ∈ A since
it cannot be mod-covered and therefore 13 is covered. Therefore, S(A) = S(0, 3, 5, 8, 12, 15).
This is a contradiction since one cannot cover 2N − 2.

Therefore, there does not exist a modular set A modulo 2N with λ(A) = 15 such that
N + 2 ∈ A and N + 1, N + 3, N + 4, N + 5, N + 6 6∈ A. �

Observe that Lemmas 3.35 and 3.36, along with previous results, imply that N + 2 6∈ A
for a modular set A modulo 2N with character λ(A) = 15.

Lemma 3.37. Let A be a modular set modulo 2N with λ(A) = 15 with N + 6 ∈ A and
N + 1, N + 2, N + 3, N + 5 6∈ A. Then N + 4 6∈ A.

Proof. Suppose N + 4 ∈ A. Then 8, 12, 14 are mod-covered and 4, 5, 6, 7 6∈ A. We need
1 ∈ A to mod-cover 7 and thus 2, 7, 11, 13 are mod-covered and N − 2 6∈ A. Therefore we
need 3 ∈ A to mod-cover 6 which implies 5, 6, 9 are mod-covered and N − 1 6∈ A. Lastly, we
need 10 ∈ A to mod-cover 4. Thus, S(A) = S(0, 1, 3, 10, 15). This is a contradiction since
we cannot cover 2N − 5. �

Lemma 3.38. There does not exist a modular set A modulo 2N with λ(A) = 15 with
N + 6 ∈ A and N + 1, N + 2, N + 3, N + 4, N + 5 6∈ A.

Proof. Suppose that such a modular set A exists. Observe that 12, 14 are mod-covered and
6, 7, N − 7, N − 6 6∈ A. We break our proof up into cases where either (Case I) 5 ∈ A or
(Case II) 5 6∈ A.

Case I: Since 5 ∈ A then 7, 9, 10 are mod-covered. We then break this case up into the
subcases where (Case I.1) 4 ∈ A, (Case I.2) 3 ∈ A, or (Case I.3) 3, 4 6∈ A.

Case I.1: Since 4 ∈ A then 6, 8 are mod-covered and 2, 3 6∈ A. We need 11 ∈ A to
mod-cover 3 which implies 1 is mod-covered. This is a contradiction since there is no way
to mod-cover 2.

Case I.2: Since 3 ∈ A then 6, 11 are mod-covered and 1, 4, N − 1 6∈ A. We need 13 ∈ A to
mod-cover 1 which then implies that 8 6∈ A. We require 2 ∈ A to mod-cover 4 and 8 which
then implies N − 2 6∈ A. Therefore, S(A) = S(0, 2, 3, 5, 13, 15). This is a contradiction since
there is no way to cover 2N − 5.

Case I.3: Since 3, 4 6∈ A, we require 8 ∈ A to mod-cover 6. Therefore, 4, 11 are also
mod-covered and 2 6∈ A. This is a contradiction because there is no way to mod-cover 3.

Case II: Since 5 6∈ A, we require 1, 4 ∈ A to mod-cover 7. Therefore, 2, 8, 10, 11, 13 are
also mod-covered and N − 5, N − 4 6∈ A. One needs 3 ∈ A to mod-cover 6 which implies
that 5, 9 are also mod-covered and N − 1 6∈ A. Therefore, S(A) = S(0, 1, 3, 4, 15). We need
N − 2 ∈ A to cover 2N − 8 and N − 3 ∈ A to cover 2N − 9. This is a contradiction since
there is no way to cover 2N − 14.

Therefore, there does not exist a modular set A modulo 2N with λ(A) = 15 such that
N + 6 ∈ A and N + 1, N + 2, N + 3, N + 4, N + 5 6∈ A. �
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Observe that Lemmas 3.37 and 3.38, along with previous results, imply that N + 6 6∈ A
for a modular set A modulo 2N with character λ(A) = 15.

Lemma 3.39. There does not exist a modular set A modulo 2N with λ(A) = 15 with
N + 4 ∈ A and N + 1, N + 2, N + 3, N + 5, N + 6 6∈ A.

Proof. Suppose such a set A exists. Observe that 8, 14 are mod-covered and 4, 7 6∈ A. We
break our proof up into the cases where either (Case I) 1 ∈ A or (Case II) 1 6∈ A.

Case I: Since 1 ∈ A, we see that 2, 7, 13 are mod-covered. We need 10 ∈ A to mod-cover
4 which implies that 5 6∈ A. We see 9 ∈ A since it cannot be mod-covered which implies
5, 11 are mod-covered. We have 3 ∈ A since it cannot be mod-covered which implies 6 is
mod-covered and N − 1 6∈ A. Lastly, 12 ∈ A since it cannot be mod-covered. Therefore,
S(A) = S(0, 1, 3, 9, 10, 12, 16). This is a contradiction since one cannot cover 2N − 3.

Case II: Since 1 6∈ A, we need 13 ∈ A to mod-cover 1. We need 5 ∈ A to mod-cover
7 which implies 3, 9, 10 are mod-covered. Therefore we need 6 ∈ A to mod-cover 7 which
implies 2, 12 are also mod-covered. This is a contradiction since one cannot mod-cover 4.

Therefore, there does not exist a modular set A modulo 2N with λ(A) = 15 such that
N + 4 ∈ A and N + 1, N + 2, N + 3, N + 5, N + 6 6∈ A. �

Lemma 3.40. There does not exist a modular set A modulo 2N with λ(A) = 15 with
N + 1, N + 2, N + 3, N + 4, N + 5, N + 6 6∈ A.

Proof. Suppose such a set A exists. Then 14 is mod-covered and 7 6∈ A. We break our
argument into the case where either (Case I) 5 6∈ A or (Case II) 5 ∈ A.

Case I: If 5 6∈ A then 1, 4 ∈ A in order to cover 7. Therefore, 2, 7, 8, 10, 13 are mod-covered
by A. We now break this case up into the subcases where (Case I.1) 3 ∈ A and (Case I.2)
3 6∈ A.

Case I.1: If 3 ∈ A, then 5, 6, 11 are mod-covered by A. We see that 9, 12 ∈ A since they
cannot be mod-covered. Therefore, S(A) = S(0, 1, 4, 6, 9, 12, 16). This is a contradiction
since there is no way to cover 2N − 1.

Case I.2: If 3 6∈ A then we need 11 ∈ A to mod-cover 3 which implies 6 6∈ A. This is a
contradiction because there is no way to mod-cover 6.

Case II: Suppose 5 ∈ A. Then 9, 10 are mod-covered by A. We break this case up into
the subcases where (Case II.1) 3 ∈ A, (Case II.2) 6 ∈ A, 3 6∈ A, and (Case II.3) 3, 6 6∈ A.

Case II.1: Suppose 3 ∈ A. Then 6, 7, 11 are mod-covered and 1, 4, N − 1 6∈ A. We need
13 ∈ A to mod-cover 1. We see that 2 ∈ A in order to mod-cover 4 and 8, 12 are mod-covered
as well. Therefore, S(A) = S(0, 2, 3, 5, 13, 15). This is a contradiction since there is no way
to cover 2N − 3.

Case II.2: Suppose 6 ∈ A and 3 6∈ A. Then 7, 8, 12 are mod-covered and 4 6∈ A. We see
that 2 ∈ A in order to cover 4 and therefore 1 6∈ A. Thus, 11 ∈ A in order to mod-cover
3 and 13 ∈ A in order to mod-cover 1. Hence, S(A) = S(0, 3, 5, 6, 11, 13, 18). This is a
contradiction since there is no way to mod-cover 2N − 1.

Case II.3: Suppose 3, 6 6∈ A. Therefore, 1, 4 ∈ A in order to cover 7. Thus, 2, 6, 7, 8, 13
are mod-covered and N − 5 6∈ A. We see 11 ∈ A in order to mod-cover 3 and 12 ∈ A since it
cannot be mod-covered. Thus, S(A) = S(0, 1, 4, 5, 11, 12, 15). We need N − 1 ∈ A to cover
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2N − 3 and N − 2 ∈ A to cover 2N − 4. Therefore, N − 3 6∈ A. This is a contradiction
because there is no way to cover 2N − 10.

Therefore, there does not exist a modular set A modulo 2N with λ(A) = 15 such that
N + 1, N + 2, N + 3, N + 4, N + 5, N + 6 6∈ A. �

4. Future Directions

Though Theorem 1.10 shows that λ(A) 6∈ {1, 3, 5, 9, 11, 15} for all independent Stanley
sequences S(A), it does not show that every character value λ ∈ N0\{1, 3, 5, 9, 11, 15} is
achieved by an independent Stanley sequence. In order to prove Conjecture 1.9, one still
needs to show that an independent Stanley sequences with character λ exists for every
λ ∈ N0\{1, 3, 5, 9, 11, 15}. Sawhney [5] has recently shown a large subset of even numbers
are characters of independent Stanley sequences. However, the case of odd character is still
completely open.
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