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RÉSUMÉ: Pour tout nombre entier positif n, les extensions binomiales

tronquées de (1 + x)n constitutées de tous les termes de degré ≤ r où

1 ≤ r ≤ n − 2 semblent toujours être irréductibles. Pour r fixe et n suff-

isamment grand, ce résultat est connu. Nous montrons ici que, pour un nom-

bre entier positif fixe r 6= 6 et n suffisamment grand, le groupe Galois d’un

tel polynôme sur les nombres rationnels est le groupe symétrique Sr. Pour

r = 6, nous montrons que le nombre de n ≤ N exceptionnels pour lesquels

le groupe Galois de ce polynôme n’est pas Sr est au plus O(logN).

ABSTRACT: For positive integers n, the truncated binomial expansions of

(1 + x)n which consist of all the terms of degree ≤ r where 1 ≤ r ≤ n − 2
appear always to be irreducible. For fixed r and n sufficiently large, this is

known to be the case. We show here that for a fixed positive integer r 6= 6 and

n sufficiently large, the Galois group of such a polynomial over the rationals

is the symmetric group Sr. For r = 6, we show the number of exceptional

n ≤ N for which the Galois group of this polynomial is not Sr is at most

O(logN).

1 Introduction

For t and r non-negative integers, we define

pr,t(x) =

r
∑

j=0

(

t+ j

t

)

xj =

r
∑

j=0

(

t + j

j

)

xj .

This polynomial arises from a normalization of the tth derivative of 1 + x + · · · + xt+r. The

polynomial is connected to a factor of the Shabat polynomials of a family of dessins d’enfant which

are trees and have passport size one (cf. [1, Example 3.3]). The polynomial pr,t(x) was conjectured
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to be irreducible, and the irreducibility was studied in [2]. In particular, we find there that if r is

fixed, then pr,t(x) is irreducible for t sufficiently large. A generalization of this irreducibility

result can be found in [11], where this polynomial was considered in a different form. There, the

irreducibility of the polynomial

qr,n(x) =

r
∑

j=0

(

n

j

)

xj ,

which is a truncated binomial expansion of (x+1)n, was investigated. As noted there, this truncated

binomial expansion came up in investigations of the Schubert calculus in Grassmannians [20].

Other results concerning these polynomials can be found in [9, 10, 14].

There are some identities involving pr,t(x) and qr,n(x) which helped establish the results found

in [2] and [11]. If we define

p̃r,t(x) = xrpr,t(1/x) =
r

∑

j=0

(

t+ j

j

)

xr−j ,

then according to [2] we have

p̃r,t(x+ 1) =

r
∑

j=0

(

t+ r + 1

j

)

xr−j .

Thus, p̃r,t(x+ 1) = xrqr,t+r+1(1/x). We have from [11] that

qr,n(x− 1) =

r
∑

j=0

cjx
j, where cj =

(

n

j

)(

n− j − 1

r − j

)

(−1)r−j.

As noted in [11], we can write

cj =
(−1)r−jn(n− 1) · · · (n− j + 1)(n− j − 1) · · · (n− r + 1)(n− r)

j!(r − j)!
.

These identities are of interest as the irreducibility over Q of one of pr,t(x), p̃r,t(x), p̃r,t(x+ 1)
and qr,t+r+1(x−1) implies the irreducibility of the other three. Furthermore, it is not difficult to see

that these polynomials all have the same discriminant (as reversing the coefficients of a polynomial

and translating do not affect the discriminant). Also, as the roots for each all generate the same

number field, we have that for a fixed r and t, the Galois groups over Q associated with these

polynomials are all the same.

The main goal of this paper is to show that these polynomials give rise to examples of polyno-

mials having Galois group over Q the symmetric group.

Theorem 1. Let r be an integer ≥ 2 with r 6= 6. If t is a sufficiently large positive integer, then

the Galois group associated with any one of pr,t(x), p̃r,t(x), p̃r,t(x + 1) and qr,t+r+1(x − 1) over

Q is the symmetric group Sr. In the case that r = 6, there are at most O(logT ) values of t ≤ T
for which the Galois group of any one of pr,t(x), p̃r,t(x), p̃r,t(x+ 1) and qr,t+r+1(x− 1) over Q is

not the symmetric group S6. In these cases, for sufficiently large t, the Galois group is PGL2(5),
a transitive subgroup of S6 isomorphic to S5.
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Observe that Theorem 1 has as an immediate consequence that for a fixed integer r ≥ 2 and r 6= 6,

the Galois group of qr,n(x) over Q is Sr provided n is sufficiently large with a similar result for

almost all n in the case that r = 6. We note that q6,10(x) has Galois group PGL2(5). The proof

of Theorem 1 will give, up to a finite number of exceptions, an explicit description of the set

N of the O(log T ) values of t ≤ T where the Galois group PGL2(5) might occur. We explain

computations that verify directly that for 10 < n ≤ 1010 and n ∈ N , the Galois group of q6,n(x) is

S6. The bound of 1010 can easily be extended much further. However, we note that there may still

be n ∈ (10, 1010] for which q6,n(x) is reducible so that q6,n(x) does not have Galois group S6 since

the explicitly given N does not take into account that our proof that q6,n(x) has Galois group S6

requires n to be sufficiently large so that, in particular, the results from [2] and [11] imply q6,n(x)
is irreducible. Nevertheless, based on further computations, we conjecture that q6,n(x) has Galois

group S6 for all n ≥ 11.

2 Preliminary Material

We will make use of Newton polygons, which we describe briefly here. Let f(x) =
∑r

j=0 ajx
j ∈

Z[x] with a0ar 6= 0, and let p be a prime. For an integer m 6= 0, we use νp(m) to denote the

exponent in the largest power of p dividing m. Let S be the set of lattice points
(

j, νp(ar−j)
)

, for

0 ≤ j ≤ r with ar−j 6= 0. The polygonal path along the lower edges of the convex hull of these

points from
(

0, νp(ar)
)

to
(

r, νp(a0)
)

is called the Newton polygon of f(x) with respect to the

prime p. The left-most edge has an endpoint
(

0, νp(ar)
)

and the right-most edge has an endpoint
(

r, νp(a0)
)

. The endpoints of every edge belong to the set S, and each edge has a distinct slope

that increases as we move along the Newton polygon from left to right.

Newton polygons provide information about the factorization of f(x) over the p-adic field Qp

and, hence, information about the Galois group of f(x) over Qp. As this Galois group is a subgroup

of the Galois group of f(x) over Q, we can use Newton polygons to obtain information about the

Galois group of f(x) over Q. Recalling that we are viewing edges of Newton polygons as having

distinct slopes, each edge of the Newton polygon of f(x) with respect to a prime p corresponds to a

factor of f(x) in Qp[x] that is not necessarily irreducible. More precisely, if an edge has endpoints

(x1, y1) and (x2, y2), then its slope a/b = (y2 − y1)/(x2 − x1) with gcd(a, b) = 1 is such that f(x)
has a factor g(x) in Qp[x] of degree x2 − x1 and with each irreducible factor of g(x) in Qp[x] of

degree a multiple of b.
We comment here that a theorem of Dedekind (cf. [7]) allows one to obtain information about

the Galois group associated with a polynomial f(x) over Q by looking at the polynomials factor-

ization modulo a prime p. More precisely, suppose f(x) is an irreducible polynomial in Z[x] and p
is a prime which does not divide its discriminant. Suppose further that f(x) factors modulo p as a

product of r irreducible polynomials of degrees d1, . . . , dr. Then Dedekind’s Theorem asserts that

the Galois group of f(x) over Q contains an element that is the product of r disjoint cycles with

cycle lengths d1, . . . , dr.
Our main tool for establishing Theorem 1 is based on combining some of the above ideas with

a theorem of C. Jordan [13] and noted in work of R. Coleman [5]. It has been cast in a convenient

form by F. Hajir [12], which we summarize as follows.

Lemma 1. Let f(x) be an irreducible polynomial of degree r, and suppose q is a prime in the

interval (r/2, r − 2) such that the Newton polygon with respect to some prime p has an edge with
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slope a/b where a and b are relatively prime integers and q|b. Let ∆ be the discriminant of f(x).
Then the Galois group of f(x) over Q is the alternating group Ar if ∆ is a square and is the

symmetric group Sr if ∆ is not a square.

We also make use of the following result from [6] and [8] (Theorem 3.3A).

Lemma 2. Let f(x) be an irreducible polynomial of degree r ≥ 2. If the Galois group of f(x)
over Q contains a 2-cycle and a q-cycle for some prime q > r/2, then the Galois group is Sr.

Alternatively, if the Galois group of f(x) over Q contains a 3-cycle and a q-cycle for some prime

q > r/2, then the Galois group is either the alternating group Ar or the symmetric group Sr.

Note that in general if the Galois group of an f(x) ∈ Z[x] over Q is contained in an alternating

group, then its discriminant is a square. Thus, in the statement of Lemma 2, one can conclude

that the Galois group is the symmetric group by showing that the discriminant ∆ of f(x) is not a

square. In the next section, we give an explicit formula for the discriminant ∆ of our polynomials

in Theorem 1 and show that ∆ is not a square for fixed r and for t sufficiently large. In the last

section, for r ≥ 8, we show the existence of primes q and p as in Lemma 1. For r ≤ 7, we appeal

to Lemma 2 to finish off the proof of Theorem 1.

3 The Discriminant

Lemma 3. Let t and r be integers with t ≥ 0 and r ≥ 2. Let ∆ be the common discriminant of

pr,t(x), p̃r,t(x), p̃r,t(x+ 1) and qr,t+r+1(x− 1). Then

∆ = (−1)r(r−1)/2 (t+ 1)r−1(t+ r + 1)r−1(t+ 2)r−2(t + 3)r−2 · · · (t+ r)r−2

(r!)r−2
.

Proof. We view t as a variable and work with

fr(x) = qr,t+r+1(x− 1) =

r
∑

j=0

cjx
j ,

where

cj =
(−1)r−j(t+ r + 1) · · · (t + r − j + 2)(t+ r − j) · · · (t+ 1)

j!(r − j)!
. (1)

To clarify, for t a non-negative integer, we have

cj =
(−1)r−j(t+ r + 1)!

j! (r − j)! t! (t+ r − j + 1)
.

However, from the point of view of (1), we can view t as a real variable.

We are interested in the discriminant ∆ of fr(x). Observe that

∆ =
(−1)r(r−1)/2

cr
Res(fr, f

′
r) =

(−1)r(r−1)/2r!

(t+ r + 1)(t+ r) · · · (t+ 3)(t+ 2)
Res(fr, f

′
r), (2)
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where Res(fr, f
′
r) is the resultant of fr and f ′

r with respect to the variable x. We express the

resultant in terms of the (2r − 1)× (2r − 1) Sylvester determinant

Res(fr, f
′
r) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cr cr−1 cr−2 . . . c1 c0 0 0 . . . 0

0 cr cr−1 . . . c2 c1 c0 0 . . . 0

0 0 cr . . . c3 c2 c1 c0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

rcr (r − 1)cr−1 (r − 2)cr−2 . . . c1 0 0 0 . . . 0

0 rcr (r − 1)cr−1 . . . 2c2 c1 0 0 . . . 0

0 0 rcr . . . 3c3 2c2 c1 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Observe that there are r − 1 rows consisting of the coefficients of fr(x) and r rows consisting of

the coefficients of f ′
r(x). For each integer j ∈ [1, r], we see from (1) that t+ r + 1 divides cj . We

deduce that t + r + 1 can be factored out of each element of the first r columns of Res(fr, f
′
r) to

show that (t+ r + 1)r is a factor of Res(fr, f
′
r). For each k ∈ {1, 2, . . . , r}, we also have from (1)

that t + r − k + 1 divides cj for each integer j ∈ [1, r] with j 6= k. In particular, each of the r − 1
columns not containing kck have each element divisible by t+ r− k+1. Thus, (t+ r− k+1)r−1

divides Res(fr, f
′
r). Hence,

(t+ r + 1)r(t+ 1)r−1(t+ 2)r−1 · · · (t + r)r−1 (3)

divides Res(fr, f
′
r). The product in (3) as a polynomial in t has degree (r + 1)(r − 1) + 1 = r2.

Hence, from (2), we see that ∆ is divisible by the polynomial

(t+ r + 1)r−1(t+ 1)r−1(t+ 2)r−2(t+ 3)r−2 · · · (t + r)r−2 (4)

of degree r2 − r in t.
We turn to making use of

pr,t(x) =

r
∑

j=0

dj x
j , where dj =

r
∑

j=0

(t + j)(t+ j − 1) · · · (t+ 1)

j!
xj .

Observe that the discriminant of fr(x) and pr,t(x) are both polynomials in t that agree at all positive

integers and, hence, are identical. We use next that ∆ is the discriminant of pr,t(x) to show that ∆
cannot be divisible by a higher degree polynomial in t than that given by (4). Taking into account

the leading coefficient of pr,t(x), we see that

∆ =
(−1)r(r−1)/2r!

(t+ r)(t+ r − 1) · · · (t+ 2)(t+ 1)
Res(pr,t, p

′
r,t), (5)
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where

Res(pr,t, p
′
r,t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dr dr−1 dr−2 . . . d1 d0 0 0 . . . 0

0 dr dr−1 . . . d2 d1 d0 0 . . . 0

0 0 dr . . . d3 d2 d1 d0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

rdr (r − 1)dr−1 (r − 2)dr−2 . . . d1 0 0 0 . . . 0

0 rdr (r − 1)dr−1 . . . 2d2 d1 0 0 . . . 0

0 0 rdr . . . 3d3 2d2 d1 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Observe that dj is a polynomial of degree j in t for each j ∈ {0, 1, . . . , r}. We set A = (aij) to be

the (2r − 1)× (2r − 1) matrix defining Res(pr,t, p
′
r,t) above, so

aij =















dr+i−j if 1 ≤ i ≤ r − 1 and i ≤ j ≤ i+ r

(i− j + 1) di−j+1 if r ≤ i ≤ 2r − 1 and i− r + 1 ≤ j ≤ i

0 otherwise.

We make use of the definition of a determinant to obtain

Res(pr,t, p
′
r,t) = detA =

∑

σ∈S2r−1

(

sgn(σ)

2r−1
∏

i=1

ai,σ(i)

)

.

We show that independent of σ ∈ S2r−1, the product
∏2r−1

i=1 ai,σ(i) is a polynomial of degree at most

r2 in t. In fact, more is true. If each ai,σ(i) 6= 0, then we show that
∏2r−1

i=1 ai,σ(i) is a polynomial of

degree exactly r2 in t. Indeed, for such σ, we have

i ≤ σ(i) ≤ i+ r for 1 ≤ i ≤ r − 1,

i− r + 1 ≤ σ(i) ≤ i for r ≤ i ≤ 2r − 1,

and

deg

( 2r−1
∏

i=1

ai,σ(i)

)

=

r−1
∑

i=1

deg(ai,σ(i)) +

2r−1
∑

i=r

deg(ai,σ(i))

=
r−1
∑

i=1

(

r + i− σ(i)
)

+
2r−1
∑

i=r

(

1 + i− σ(i)
)

= r2 +
2r−1
∑

i=1

(

i− σ(i)
)

= r2.

We set

ρ =
∑

σ∈S2r−1

(

sgn(σ)

2r−1
∏

i=1

ℓ(ai,σ(i))

)

,
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where ℓ(ai,σ(i)) denotes the leading coefficient of ai,σ(i). Observe that if ρ 6= 0, then detA is a

polynomial of degree r2 with leading coefficient ρ. The value of ρ is the determinant of (2r− 1)×
(2r − 1) matrix (ℓ(aij)). Since

ℓ(aij) =















1/(r + i− j)! for 1 ≤ i ≤ r − 1 and i ≤ j ≤ i+ r

1/(i− j)! for r ≤ i ≤ 2r − 1 and i− r + 1 ≤ j ≤ i

0 otherwise,

this determinant is the value of Res(g, g′), where g(x) =
∑r

j=0 x
j/j!. This polynomial truncation

of ex has been studied by R F. Coleman [5] and I. Schur [21, 22]. In particular, g(x) corresponds

to the generalized Laguerre polynomial L
(−r−1)
r (x), for which I. Schur [23] gives an explicit for-

mula for the discriminant from which the value of Res(g, g′) is easily determined (also, see [16],

Chapter 9). From these, we see that

Res(g, g′) =
1

(r!)r−1
.

We deduce that Res(pr,t, p
′
r,t) is a polynomial of degree r2 in t with leading coefficient 1/(r!)r−1.

From (5), we see that ∆ is a polynomial of degree r2 − r in t which has leading coefficient

(−1)r(r−1)/2/(r!)r−2. Since (4) divides ∆, the lemma follows.

Lemma 4. Let r be an integer ≥ 2. For t a non-negative integer, let ∆ be the common discriminant

of pr,t(x), p̃r,t(x), p̃r,t(x+1) and qr,t+r+1(x−1). Then there is a t0 = t0(r) such that for all t ≥ t0,

the value of ∆ is not a square.

Proof. Suppose r ≥ 2 and t ≥ 0 are such that ∆ is a square. From Lemma 3, we see that r ≥ 4
since ∆ < 0 for r ∈ {2, 3}. We consider even and odd r separately and only the case that ∆ ≥ 0
since ∆ < 0 cannot be a square.

In the case that r is even, Lemma 3 implies that (t+1)(t+ r+1) is an integer that is a rational

square. Hence, (t+ 1)(t+ r+1) is the square of an integer. Let δ = gcd(t+1, t+ r+1). Then δ
divides the difference (t+r+1)−(t+1) = r, so δ ≤ r. Also (t+1)/δ and (t+r+1)/δ are relatively

prime numbers whose product is a square, so each of them is a square. As (t+r+1)/δ−(t+1)/δ =
r/δ ≤ r and the difference of two consecutive squares (n + 1)2 − n2 = 2n + 1 tends to infinity

with n, we deduce that (t+ 1)/δ is bounded. In fact, taking n2 = (t + 1)/δ, we see that

2

√

t+ 1

r
+ 1 ≤ 2

√

t + 1

δ
+ 1 ≤ r

δ
≤ r =⇒ 4(t+ 1)

r
≤ (r − 1)2

=⇒ t < t+ 1 ≤ r (r − 1)2

4
.

Thus, for r even and t ≥ r(r − 1)2/4, we have that ∆ is not a square.

In the case that r is odd, Lemma 3 implies that the largest factor of the product

(t + 2)(t+ 3) · · · (t+ r)

relatively prime to r! is a square. As (t + r) − (t + 2) = r − 2, we see also that for every prime

p > r dividing the product (t + 2)(t + 3) · · · (t + r), there is a unique j ∈ {2, 3, . . . , r} for which
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p|(t + j). Thus, for such a p and j, there is a positive integer e for which p2e‖(t + j). As r ≥ 5,

we deduce that there are positive integers a, b and c each dividing the product of the primes up to

r and satisfying

t + 2 = au2, t + 3 = bv2 and t + 4 = cw2,

for some positive integers u, v and w. We deduce that

b2v4 − 1 = (t + 3)2 − 1 = (t+ 2)(t+ 4) = ac(uw)2.

As a, b and c divide the product of the primes up to r, there are finitely many equations of the

form acy2 = b2x4 − 1 possible for a given r. Each such equation is an elliptic curve containing

finitely many integral points by a theorem of Siegel [15, 25, 26]. Hence, for a fixed r, the value of

x = v =
√

(t+ 3)/b is bounded from above for every possible b. Thus, t0 exists in the case of r
odd, completing the proof.

4 Proof of Theorem 1

As noted in the introduction, from [2] and [11], for t sufficiently large, the polynomial pr,t(x) and,

hence, the polynomials p̃r,t(x), p̃r,t(x+ 1) and qr,t+r+1(x− 1) are irreducible.

We begin by considering the case that r is a fixed integer ≥ 8. From Lemma 1 and Lemma 4,

it suffices to show that there is a prime q in the interval (r/2, r− 2) such that the Newton polygon

of one of pr,t(x), p̃r,t(x), p̃r,t(x+ 1) and qr,t+r+1(x− 1) with respect to some prime p has an edge

with slope a/b where a and b are relatively prime integers and q|b.
Since r ≥ 8, one can show using explicit results on the distribution of primes (cf. [19]) that

there is a prime q ∈ (r/2, r − 2). Alternatively, from [18], one has that there are 3 primes in the

interval (r/2, r] for r ≥ 17 so that there must be at least 1 prime in the interval (r/2, r − 2) for

r ≥ 17. Then a simple check leads to such a prime for r ≥ 8.

With q a prime in (r/2, r − 2), we consider t ∈ Z+ sufficiently large. Note that the numbers

t + r + 1 − q and t + 1 + q are distinct positive integers. Let p be a prime > r, and suppose

pe‖(t+ r + 1− q)(t+ 1+ q) where e ∈ Z+. Observe that p > r implies either pe‖(t+ r + 1− q)
or pe‖(t + 1 + q). We use that in fact p can divide at most one of t + r + 1, t + r, . . . , t + 1.

Suppose pe‖(t+ r+1− q). Then the Newton polygon of qr,t+r+1(x− 1) with respect to p consists

of two edges, one joining (0, e) to (r − q, 0) and the other joining (r − q, 0) to (r, e). In the case

that pe‖(t + 1 + q), the Newton polygon of qr,t+r+1(x − 1) with respect to p also consists of two

edges, one joining (0, e) to (q, 0) and the other joining (q, 0) to (r, e). In either case, we see that the

Newton polygon of qr,t+r+1(x − 1) with respect to p has an edge of slope ±e/q. From Lemma 1,

we can therefore deduce for sufficiently large t, the Galois group of qr,t+r+1(x − 1) is Sr unless

q | e. This is true for each prime p > r with p|(t+ r + 1− q)(t+ 1 + q).
So suppose then that for every prime p > r dividing (t + r + 1 − q)(t + 1 + q), we have

pe‖(t+ r + 1− q) or pe‖(t+ 1 + q) for some e divisible by q. We deduce that we can write

t+ 1 + q = auq and t+ r + 1− q = bvq,

where a, b, u and v are positive integers with both a and b dividing

P =
∏

p≤r
p prime

pq−1.
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Note that q ∈ (r/2, r− 2) and r ≥ 8, so that q ≥ 5. For fixed a and b dividing P , we have u and v
must be solutions to the Diophantine equation

auq − bvq = 2q − r > 0.

As this is a Thue equation, we deduce that there are finitely many integral solutions in u and v
(cf. [24]). This is true for each fixed a and b dividing P . As P and q only depend on r and r is

fixed, we deduce that there are finitely many possibilities for t+1+q = auq. Hence, for sufficiently

large t, we deduce that q ∤ e for some prime p > r with pe‖(t + r + 1 − q) or pe‖(t + 1 + q).
Consequently, in the case that r ≥ 8, we can conclude the Galois group of qr,t+r+1(x − 1) is Sr,

from which the same follows for the polynomials pr,t(x), p̃r,t(x) and p̃r,t(x+ 1).
Now, we consider the case that r ≤ 7. We consider t sufficiently large so that in particular the

polynomials in Theorem 1 are irreducible. In the case that r = 2 , the only possibility then is that

the Galois group is S2. For r = 3, we use also that, by Lemma 4, the discriminant of p3,t(x) is

not a square, and this is enough to imply that the Galois group of p3,t(x) over Q is S3. For r = 4,

suppose p is a prime > 3 dividing (t+2)(t+4). If pe‖(t+2)(t+4), then pe‖(t+2) or pe‖(t+4). In

either case, we see that the Newton polygon of qr,t+r+1(x−1) with respect to p consists of an edge

with slope e/3. If 3 ∤ e, then the Galois group will have a 3-cycle so that Lemma 2 and Lemma 4

imply that the Galois group is S4. Otherwise, 3 | e for each prime p > 3 dividing (t + 2)(t + 4).
We deduce that t+4 = au3 and t+2 = bv3 where a and b divide 36. Observe that au3 − bv3 = 2.

This is a Thue equation, and as before this equation has no solutions for t sufficiently large. Thus,

since t is sufficiently large, the Galois group of p4,t(x) over Q is S4.

For r = 5 and r = 7, one can give similar arguments. Specifically, for r = 5 and for a prime

p > 3 such that pe‖(t + 3)(t + 4), we deduce that either 3 | e or else there is a σ in the Galois

group of p5,t(x) over Q which is a 3-cycle or is a product of two disjoint cycles, one a 3-cycle and

one a 2-cycle. In the case that 3 | e for every such prime p > 3, we have t+ 4 = au3, t + 3 = bv3

and au3 − bv3 = 1, where a and b divide 36. Since t is sufficiently large, this does not occur. In

the case that σ is a product of a 3-cycle and a 2-cycle, we see that σ2 is a 3-cycle. Thus, regardless

of σ, we can apply Lemma 2 and Lemma 4 to deduce that the Galois group of p5,t(x) over Q is

S5. For r = 7 and for a prime p > 3 such that pe‖(t + 4)(t + 5), one similarly argues that either

3 | e for every prime p > 3 and a Thue equation shows that this impossible since t is sufficiently

large or there is a σ in the Galois group of p7,t(x) over Q such that σ4 is a 3-cycle. Also, for r = 7
and for a prime p > 7 such that pe‖(t + 1)(t + 8), one similarly argues that either 7 | e for every

prime p > 7 and a Thue equation shows that this impossible since t is sufficiently large or there is

a 7-cycle in the Galois group of p7,t(x) over Q. Thus, the Galois group of p7,t(x) over Q contains

a 3-cycle and a 7-cycle, and Lemma 2 and Lemma 4 imply this Galois group is S7.

We are left with the case that r = 6. There are 16 transitive subgroups of S6 (cf. [8]). We can

eliminate all but two of these as possibilities for the Galois group G of p6,t(x) over Q as follows.

Using an argument similar to the above, we consider a prime p > 5 such that pe‖(t + 2)(t+ 6) to

show that either 5 | e for every prime p > 5 and a Thue equation shows that this impossible since

t is sufficiently large or there is a 5-cycle in G. Since t is sufficiently large, we deduce that p6,t(x)
is irreducible over Q, p6,t(x) has a non-square discriminant in Q, and G contains a 5-cycle. The

latter implies that 5 divides |G|. Of the 16 transitive subgroups of S6, only 4 have size divisible by

5, and of those exactly 2 are contained in A5. Since the discriminant of p6,t(x) is not a square, this

leaves then just 2 possibilities for G, one is S6 and the other is PGL2(5), which is a subgroup of

S6 that is isomorphic to S5.

9



For the purposes of the proof of Theorem 1, we can distinguish between cases where G = S6

and cases where G = PGL2(5) by observing that S6 has an element which is the product of two

disjoint cycles, one a 2-cycle and the other a 4-cycle, whereas PGL2(5) has no such element. We

consider a prime p > 3 such that pe‖(t + 3)(t+ 5) for some e ∈ Z+.

If 2 ∤ e then p6,t(x) = g(x)h(x) where g(x) and h(x) are irreducible polynomials over Qp of

degrees 2 and 4 respectively. Let Fg and Fh denote the splitting fields of g and h over Qp and

observe that they are tamely ramified since p > 3. Using Newton polygons, one deduces that Fg is

totally ramified and that the ramification index of Fh is divisible by 4. We know that Fh is tamely

ramified and therefore the tame inertia group is cyclic with order divisible by 4 [3, Corollary 1, p.

31]. Since S4 has no larger cyclic subgroups, we deduce that the ramification index of Fh is exactly

4 and the tame inertia subgroup is generated by a 4-cycle (the only possible form of an element

with order 4 in S4).

Now, let K be the compositum of Fg and Fh. If Fh ( K, then Fh ∩ Fg = Qp. Therefore, there

is an element of the Galois group of p6,t(x) that permutes the 2 roots of g and cyclicly permutes the

4 roots of h. That is, the Galois group of p6,t(x) contains an element which is the disjoint product

of a 4-cycle and a 2-cycle.

If K = Fh, then Fg ⊂ Fh. Let τ be a generator of the tame inertia group of Fh. If τ permutes

the roots g, then the Galois group of p6,t(x) contains an element which is the disjoint product of a

4-cycle and a 2-cycle. If τ fixes the roots of g, then the roots of g lie in Kτ , the fixed field of τ .

However, since τ generates the inertia subgroup of K, we know that Kτ is an unramified extension

of Qp [17, Proposition 9.11, p. 173]. Therefore, Fg ⊂ Kτ is unramified, which is a contradiction

with our previous deduction that Fg is a totally ramified quadratic extension of Qp.

Since the Galois group G has an element that is the product of two disjoint cycles, one a 2-cycle

and the other a 4-cycle, we have shown that G = S6. In the case that 2 | e for every prime p > 3,

we have t + 5 = au2 and t + 3 = bv2 where a and b are divisors of 6. In this case we have, for

fixed a and b, the Diophantine equation

au2 − bv2 = 2 (6)

in the variables u and v. Of the 16 possibilities for (a, b) where a and b divide 6, there are 9 for

Pairs (a, b) All Solutions

(1, 2) u = 2u′ where (1 +
√
2 )2m−1 = v +

√
2 u′ for m ∈ Z+

(2, 1) v = 2v′ where (1 +
√
2 )2m = u+

√
2 v′ for m ∈ Z+

(2, 3) v = 2v′ where (5 + 2
√
6 )m = u+

√
6 v′ for m ∈ Z+

(2, 6) (2 +
√
3 )m = u+

√
3 v for m ∈ Z+

(3, 1) (1 +
√
3 )(2 +

√
3 )m−1 = v +

√
3 u for m ∈ Z+

(6, 1) (2 +
√
6 )(5 + 2

√
6 )m−1 = v +

√
6u for m ∈ Z+

Table 1: Solutions to the Pell Equations

which (6) can be shown to have no solutions modulo either 3 or 4. For (a, b) = (2, 2), the equation

(6) is equivalent to u2−v2 = 1. Since consecutive positive squares differ by more than 1 and since

t + 5 = au2, we deduce that there are no solutions for t ≥ 1. The remaining 6 choices of (a, b)
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are tabulated in Table 1. Here, the equation (6) corresponds to a Pell equation which has infinitely

many solutions in positive integers u and v given by the right column in the table. These solutions

were found using classical methods for solving Pell equations (cf. [4]), and we do not elaborate

on the details. In each case, the solutions grow exponentially, and the total number of solutions in

pairs (u, v) with u and v each ≤ X is O(logX). As t + 5 = au2 and t + 3 = bv2, we deduce

that the number of t ≤ T such that G = PGL2(5) is at most O(log T ), completing the proof of

Theorem 1.

The inclusion of the phrase “at most” in the theorem is to emphasize that we do not know that

these exceptional pairs that arose at the end of this proof give rise to cases where G = PGL2(5).
In fact, it is likely that G = S6 for every sufficiently large t when r = 6. For t ∈ {1, 3}, which

arise from the two smallest solutions coming from Table 1, one checks that G = PGL2(5). There

are 37 other positive integer values of t ≤ 1010 coming from Table 1, and one checks that for each

of these we have:

• For some prime p1 ≤ 149, the polynomial p6,t(x) is an irreducible sextic polynomial modulo

p1. Hence, p6,t(x) is irreducible.

• The discriminant ∆ of p6,t(x) is not a square. Hence, G is not contained in A6. (Note that

by Lemma 3, if r = 6, then ∆ < 0 for all non-negative integers t; thus, ∆ cannot be a square

if r = 6.)

• For some prime p2 ≤ 101, the polynomial p6,t(x) factors as a linear polynomial times an

irreducible quintic modulo p2. Hence, G = PGL2(5) or G = S6.

• For some prime p3 ≤ 109 not dividing the discriminant ∆ of p6,t(x), the polynomial p6,t(x)
factors as an irreducible quadratic times an irreducible quartic modulo p3. Hence, G = S6

(using Dedekind’s Theorem discussed in Section 2).

It therefore is plausible that for t > 3 in general, the Galois group of p6,t(x) is in fact S6. Note that

since p̃r,t(x+ 1) = xrqr,t+r+1(1/x), the comments about qr,n(x) after the statement of Theorem 1

follow.
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