1. Let \(f(x) = x^3 - 3x + 1 \). Since \(f \) is a polynomial, it is differentiable and continuous everywhere, including \([1, 3] \). Therefore, Rolle’s theorem applies and \(f'(c) = 0 \) for some \(c \in (1, 3) \). Specifically, \(f'(x) = 3x^2 - 3 \), and this is zero for \(x = 1 \). Thus, \(c = 2 \).

5. Let \(f(1) = 0 = f(1) \), but \(f'(x) = -\frac{2}{3x^{1/3}} \) is never zero on \((-1, 1)\). Although \(f \) is continuous on \([-1, 1] \), \(f \) is not differentiable on \((-1, 1)\) since \(f'(x) \) is undefined at \(x = 0 \). Thus, there is no contradiction to Rolle’s Theorem.

9. See the back of the book for the graphs. For part (c), \(f'(x) = 1 - \frac{4}{x^2} \). We need to know when this is equal to \(\frac{f(8) - f(1)}{8 - 1} = 0.5 \). We solve \(1 - \frac{4}{x^2} = \frac{1}{2} \). \(2x^2 = 8 \), so \(x^2 = 8 \). Thus \(x = \sqrt{8} = 2\sqrt{2}. \) (We ignore the negative root since it does not lie in \([1, 8]\).)

14. Since \(f \) is a rational function, it is differentiable and continuous on its domain, which includes \([1, 4]\).
\[
f'(x) = \frac{x + 2 - x}{(2 + x)^2} = \frac{2}{(x + 2)^2}.
\]
The slope of the secant line is \(\frac{f(4) - f(1)}{4 - 1} = \frac{2/3 - 1/3}{3} = \frac{1}{9} \). We solve \(\frac{2}{(x + 2)^2} = \frac{1}{9} \) for \(x \): \(18 = (x + 2)^2 \), so \(x + 2 = \pm 3\sqrt{2} \) and \(x = \pm 3\sqrt{2} - 2 \). Only the positive root is in the interval, so \(c = 3\sqrt{2} - 2 \).

17. \(f(-1) = -6 \) and \(f(0) = 1 \), so \(f \) has a root \(x_1 \) in \((-1, 0)\) by the Intermediate Value Theorem. \(f'(x) = 20x^4 + 3x^2 + 2 \geq 2 \), so \(f'(x) \) is never zero. If \(f \) had another root \(x_2 \), then Rolle’s Theorem would imply that \(f' \) had a zero in \((x_1, x_2)\), which is not the case. Therefore, \(f \) cannot have a second root, so it has exactly one.

20. If \(f(x) = x^4 + 4x + c \), then \(f'(x) = 4x^3 + 4 = 4(x + 1)(x^2 - x + 1) \). If \(f \) had three distinct zeros, then \(f' \) would have to have at least 2 zeros by Rolle’s Theorem. However, the only zero of \(f' \) is \(x = -1 \). Therefore, \(f \) has at most two distinct zeros.

21. (a) Let \(P \) be a polynomial of degree 3. If \(P \) has four roots, then between each consecutive pair will lie a zero of the derivative by Rolle’s Theorem. But the derivative \(P' \) is a polynomial of degree 2; if it has three zeros, then between each consecutive pair will lie a zero of \(P'' \), again by Rolle’s Theorem applied to \(P' \). This means that \(P'' \) will have 2 zeros. Now \(P'' \) is a polynomial of degree 1, which we know has at most one zero, so this is not possible. Therefore, \(P \) cannot have 4 distinct zeros.

(b) If our polynomial of degree \(n \) is \(P \), then for \(P \) to have \(n + 1 \) zeros would require that \(P' \) have at least \(n \) zeros, as above. But \(P' \) is a polynomial of degree \(n - 1 \), and we may continue backward as we did in (a) to find that a polynomial of degree 1 would have two zeros.

23. Since \(f \) is differentiable on \([1, 4]\), it is automatically continuous on \([1, 4]\), so the Mean Value Theorem applies. Whatever \(f(4) \) is, there will be a \(c \in (1, 4) \) such that \(f'(c) = \frac{f(4) - f(1)}{4 - 1} = \frac{f(4) - 10}{3} \), so \(f(4) = 3f'(c) + 10 \geq 3(2) + 16 \). Thus, \(f(4) \geq 16 \).

26. Let \(h(x) = f(x) - g(x) \). Then \(h \) is continuous on \([a, b]\) and differentiable on \((a, b)\) since \(f \) and \(g \) are. Note that \(h(a) = 0 \). By the Mean Value Theorem, there is a number \(c \in (a, b) \) such that \(h'(c) = \frac{h(b) - h(a)}{b - a} = \frac{h(b)}{b - a} = \frac{f'(c) - g'(c)}{b - a} \). Since \(f'(c) < g'(c) \), the numerator is negative. Therefore, \(h(b) = f'(c) - g'(c) < 0 \), so \(f(b) - g(b) < 0 \). This is what we were hoping for: \(f(b) < g(b) \).

34. Let \(h(x) = f(x) - x \). If \(f \) has two fixed points \(a \) and \(b \), then \(h(a) = 0 = h(b) \), so \(h \) has a derivative of zero somewhere between \(a \) and \(b \). But \(h'(x) = f'(x) - 1 \), which is never zero! Therefore \(f \) cannot have two fixed points.