Math 249 Exam III

Tuesday, November 16, 2004

Remember to **show all work**. Unsupported solutions will receive **no credit**.

1. (20 points) Consider \(f(x, y) = e^{xy} \).
 (a) Find \(\nabla f(x, y) \).
 Solution: \(\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \langle ye^{xy}, xe^{xy} \rangle \).
 (b) Sketch the level curves for \(z = e^{-1}, 1, e \). Sketch as accurately as possible and label each.
 Solution: (for both (b) and (c))
 (c) Draw the gradient at \((1, 1)\) on your level curves.
 (d) What does \(\nabla f(1, 1) \) mean? (I’m not looking for a name; I’m looking for an interpretation!)
 Solution: This is the direction of greatest increase on the graph of \(f \) at the point \((1, 1)\).
 (e) Find the directional derivative of \(f \) in the direction of \(\langle -3, 4 \rangle \) at \((1, 1)\). How does this number compare with the length of \(\nabla f(1, 1) \)? Why?
 Solution: \(D_u f(1, 1) = \langle e, e \rangle \cdot \langle -3, 4 \rangle = e \frac{5}{3} \). It is smaller than the length of \(\nabla f(1, 1) \) since the latter is the maximum rate of increase (for any direction) at \((1, 1)\).

2. (10 points) As a car climbs a mountain, a scientist is measuring atmospheric pressure. She determines that the pressure at \((x, y)\) (coordinates on a map) is given by \(P(x, y) = 70 + 3x^2 + y^2 \) kPa. If \(x(t) = (10-t)\cos(2\pi t) \) and \(y(t) = (10-t)\sin(2\pi t) \), where \(t \) is measured in hours, find \(\frac{dP}{dt} \) at \(t = 2 \) hours.
 Solution:
 \[
 \frac{dP}{dt} = \frac{dP}{dx} \frac{dx}{dt} + \frac{dP}{dy} \frac{dy}{dt} = \frac{3x}{\sqrt{x^2 + y^2}}(\cos(2\pi t) - 2\pi(10-t)\sin(2\pi t)) + \frac{3y}{\sqrt{x^2 + y^2}}(-\sin(2\pi t) - 2\pi(10-t)\cos(2\pi t)).
 \]
 At \(t = 2 \), we have \(x = 8 \) and \(y = 0 \), so \(\frac{dP}{dt} = -3 \).

3. (10 points) A toy manufacturer has a mold to create a plastic “Rapunzel’s Tower,” which is a cone placed on top of a cylinder. The inner radius of each is 5cm, the inside heights of the cylinder and cone are each 15 cm. The cylinder has a bottom. If the plastic is 0.15 cm thick, use differentials to estimate the amount of plastic in each Rapunzel’s Tower.
 Solution: \(V = \frac{1}{3} \pi r^2 h + \pi r^2 h \), so \(dV = \frac{4}{3}(2\pi rhdr + \pi r^2 dh) = \frac{4}{3}(2\pi(5)(15)(0.15) + \pi(5^2)(0.15) = 35\pi \approx 110 \text{ cm}^3 \).
4. (20 points) Find the critical points of \(f(x, y) = 2x^2 - 4xy + y^3 + 2 \) and classify each as a local maximum, local minimum, or neither.

Solution: \(f_x = 4x - 4y, f_y = -4x + 3y^2 \). From \(f_x = 0 \), we get \(y = x \), so \(f_y = 0 \) implies \(3y^2 = 4y \). Thus \(y = 0 \) or \(y = 4/3 \). The critical points are \((0, 0)\) and \((4/3, 4/3)\). (Recall we have \(y = x \).)

Now \(f_xx = 4, f_xy = -4 \), and \(f_yy = 6y \), so \(D(x, y) = 24y - 16 \). \(D(0, 0) = -16 \), so \((0, 0)\) is a saddle point. \(D(4/3, 4/3) = 16 > 0 \). \(f_xx(4/3, 4/3) = 4 > 0 \), so we have a local minimum at \((4/3, 4/3)\).

5. (10 points) Compute \(\iint_D xe^{xy} dA \) if \(D = [0, 1] \times [-1, 1] \).

Solution:

\[
\iint_D xe^{xy} dA = \int_0^1 \int_{-1}^1 xe^{xy} dy dx = \int_0^1 (e^x - e^{-x}) dx = e^x + e^{-x} \Big|_0^1 = e + e^{-1} - 2.
\]

6. (10 points) Compute \(\iint_D \frac{1}{\sqrt{4 - x^2 - y^2}} dA \), where \(D = \{(x, y)|x \geq 0, y \geq 0, \text{ and } 1 \leq x^2 + y^2 \leq 4\} \).

Solution:

\[
\iint_D \frac{1}{\sqrt{4 - x^2 - y^2}} dA = \int_0^{\pi/2} \int_1^2 \frac{r}{\sqrt{4 - r^2}} dr d\theta = \frac{\pi}{2} \left(-\sqrt{4 - r^2}\right) \Big|_1^2 = \frac{\pi \sqrt{3}}{2}.
\]

7. (10 points) Compute \(\int_0^1 \int_{2x}^2 e^{-y^2} dy dx \) by reversing the order of integration. Sketch the region of integration.

Solution: The region of integration is the triangle shown below.

We get

\[
\int_0^1 \int_{2x}^2 e^{-y^2} dy dx = \int_0^2 \int_0^{y/2} e^{-y^2} dx dy = \int_0^y \frac{y}{2} e^{-y^2} dy = \left[-\frac{1}{4} e^{-y^2}\right]_0^2 = 1 - e^{-4}.
\]
8. (10 points) True or False.

(a) **TRUE** If L is the linearization of f at (x_0, y_0), then the graph of L is the tangent plane to the graph of f at (x_0, y_0).

(b) **FALSE** For any function f of two variables, $f_{xy} = f_{yx}$.

(c) **FALSE** If f is continuous on the bounded set D, then f has an absolute maximum and minimum on D.

(d) **TRUE** If f is continuous on $[a, b] \times [c, d]$, then $\int_a^b \int_c^d f(x, y)dydx = \int_c^d \int_a^b f(x, y)dxdy$.

(e) **FALSE** If f is a function of two variables, then $\nabla f(x_0, y_0)$ is perpendicular the tangent plane to the graph of f at (x_0, y_0).