Maple Funsheet 2: Vector Operations and Parametric Curves

Directions: Work in MAPLE. By the end of the day on Monday, January 27, one group member should e-mail me and all other group members your group’s MAPLE worksheet as an attachment with all output deleted. I will return my comments by replying. Please turn in a group worksheet, but be sure to enter all group members’ names at the beginning. Also, I do not want to see all of your scratch work: turn in as clean a MAPLE file as possible. (I do want to see your commands, though.) Text comments are helpful; there is a “T” button at the top of the screen you can click to give you a comment line.

Work together on each problem; do not delegate different problems to different people.

You will need the **with(plots):** and **with(VectorCalculus):** commands for these exercises. Note that many commands and examples are available on my webpage. You should also make liberal use of the MAPLE help system as needed.

Maple Exercises

1. Let $u = <2, 4, -3>$ and $v = <-1, 3, 2>.$

 (a) Use Maple to compute $u \times v$.

 (b) Verify that u and v are both orthogonal to $u \times v$.

 (c) Find the area of the parallelogram determined by u and v.

2. Find the volume of the parallelepiped determined by $u = <1, 1, 5>, v = <-2, 4>,$ and $w = <3, 1, -1>$.

3. To plot parametric curves in Maple, use the regular plot command with modifications as shown:

   ```maple
   plot([f(t), g(t), t=a..b]);
   plot3d([f(t), g(t), h(t)], t=a..b, s=0..1);
   ```

 for 2D and 3D parametric plots, respectively. (The s=0..1 is a dummy parameter because Maple expects two parameters in plot3d.) Plot the parametric curves shown below.

 (a) $x = t^2, y = 3t + 1$

 (b) $x = \cos t, y = \sin t$ and $x = 2\cos(t), y = 2\sin(t)$ on the same set of axes. **plot**(\{[stuff],[stuff2]\));

 (Note the curly braces.)

 (c) $x = 2t, y = t^2 + 1, z = t^3$ (include the optional argument axes=boxed.)

4. Plot the parametric curves below.

 (a) $x = t, y = 2t$

 (b) $x = t, y = 2t + 1$

 (c) $x = t + 3, y = 5t - 2$

 (d) $x = -3t + 1, y = 4t - 5$

 (e) $x = 3t, y = 2t - 2, z = t + 4$

 On a text line (Ctrl-T), describe the kind of curves these are. In general, what geometrical object is a parametric curve of the form $x = at + b, y = ct + d$? What if we also include $z = et + f$?

5. Put together a few interesting functions to make a cool parametric curve. Just play around with this for a few minutes and only turn in your favorite.