Solutions to Homework Assignment 13

MATH 345-01
Section 25, Page 78

1,3,9

1. (a) \(u = 2x - 2xy \), so \(u_x = 2 - 2y \) and \(u_{xx} = 0 \). Also, \(u_y = -2x \) and \(u_{yy} = 0 \), so \(u \) is harmonic. If \(v \) is a harmonic conjugate of \(u \), then \(v_y = u_x = 2 - 2y \), so \(v = 2y - y^2 + g(x) \) for some function \(g \). Then \(v_x = g'(x) = -u_y = 2x \), so \(g(x) = x^2 + C \). Thus \(v(x, y) = 2y - y^2 + x^2 \) is a harmonic conjugate of \(u \).

(b) \(u_{xx} = -6x \) and \(u_{yy} = 6x \), so \(u \) is harmonic. If \(v \) is a harmonic conjugate of \(u \), then \(v_y = u_x = 2 - 3x^2 + 3y^2 \), so \(v = 2y - 3x^2y + y^3 + g(x) \) for some function \(g \). Thus \(v_x = -u_y = -6xy \), so \(g'(x) = 0 \). Thus \(v = 2y - 3x^2y + y^3 \) is a harmonic conjugate of \(u \).

(c) (c) and (d) are similar.

3. Since \(v \) is a harmonic conjugate of \(u \) and vice-versa, we have \(u_x = v_y \) and \(u_y = -v_x \) as well as \(v_x = u_y \) and \(v_y = -u_x \). Thus \(u_x = -u_x \), so \(u_x = 0 \). This also gives us \(v_y = 0 \), and we can likewise find \(u_y = v_x = 0 \). Since all partials are zero, \(u \) and \(v \) must both be constant.

9. We have \(f(z) = \frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2} \). Thus the level curves to plot are \(\frac{x}{x^2 + y^2} = C_1 \) and \(\frac{-y}{x^2 + y^2} = C_2 \) for values of \(C_1 \) and \(C_2 \). The graphs are below.