1. (a) We know \(b = ax \) for some integer \(x \in \mathbb{Z} \). Thus \(bc = (ax)c = a(xc) \), so \(a|bc \).

(b) If \(a|b \), then \(b = ax \) for some \(x \). Thus \(bc = axc = (ac)x \), so \(ac|bc \). Conversely, if \(ac|bc \), then we have \(bc = (ac)x \) for some \(x \in \mathbb{Z} \). Since \(c \neq 0 \), \(b = ax \), and thus \(a|b \).

(c) With \(b = ax \) and \(d = cy \), we have \(bd = (ac)(xy) \), so \(ac|bd \).

3. (a) If \(3|a \), we are done. If not, then \(a = 3q + 1 \) or \(a = 3q + 2 \). Thus \(2a^2 + 7 = 2(9q^2 + 9q + 1) + 7 = 9(2q^2 + 2q + 1) \), or \(2a^2 + 7 = 2(9q^2 + 12q + 4) + 7 = 3(2q^2 + 8q + 5) \). In either case, \(3|2a^2 + 7 \) and hence \(3|a(2a^2 + 7) \).

(b) If \(a \) is odd, then \(a \) has the form \(2a + 1 \). Thus \((a^2 + 3)(a^2 + 7) = (4a^2 + 4a + 4)(4a^2 + 4a + 8) = 16(a^2 + a + 1)(a^2 + a + 2) \). Since \(a^2 + a + 1 \) and \(a^2 + a + 2 \) are consecutive integers, one of them is even. Thus \((a^2 + a + 1)(a^2 + a + 2) = 2k \) for some integer \(k \), so \((a^2 + 3)(a^2 + 7) = 32k \), and \(32|(a^2 + 3)(a^2 + 7) \), as desired.

4. If \(a > 0 \) and \(a|1 \), then \(1 = ax \) for some integer \(x \), which must positive since \(ax \) is positive. But \(a > 1, x \geq 1 \implies 1 = ax > 1 \), a contradiction, so \(a = 1 \). If \(a < 0 \), then \(-a > 0 \) and we find that \(-a = 1 \), so \(a = -1 \).

5. If \(a|b \) and \(b|a \), then we have \(b = ax = (by)x \) for some integers \(x, y \). Since \(b|0, b \neq 0 \), so we find \(xy = 1 \). By part (a), \(x = \pm 1 \), so \(b = \pm a \).

7. \(1364 = 80 \cdot 17 + 4 \).

8. (a) Let \(n \in \mathbb{Z} \). Then by the division algorithm, \(n = 3q, 3q + 1, \) or \(3q + 2 \) for some \(q \). Thus \(n^2 = 9q^2 = 3(3q^2), n^2 = (3q + 1)^2 = 9q^2 + 9q + 1 = 3(3q^2 + 3q) + 1, \) or \(n^2 = (3q + 2)^2 = 9q^2 + 12q + 4 = 3(3q^2 + 4q + 1) + 1 \). Thus, \(n^2 \) is of the form \(3k \) or \(3k + 1 \).

(b) If \(n \in \mathbb{Z} \), then \(n \) is of the form \(9q, 9q + 1, \ldots, 9q + 8 \). \(9q, 9q + 3, \) and \(9q + 6 \) all have cubes that are a multiple of \(3 \), so in these cases, \(n^3 \) is of the form \(9k \). The cubes of \(9q + 1, 9q + 4, \) and \(9q + 7 \) all have the form \(9q + 1 \), and the cubes of \(9q + 2, 9q + 5, \) and \(9q + 8 \) all have the form \(9q + 8 \).