Prop.: For all real numbers a, one and only one of the following holds:

- a is a positive number
- a is zero
- a is a negative number

Proof

Let a be a real number. We will prove this is four cases.

Case 1: Suppose a is positive. Thus, a cannot be zero, by part 2 of the order axiom. Now suppose a is positive and negative. Thus, $a \in \mathbb{R}^+$ and $a \in \mathbb{R}^-$. By definition of the negative numbers, this means that $a \notin \mathbb{R}^+$. Thus, we have a contradiction. So a cannot be both positive and negative. Thus, if a is positive, it is neither zero nor negative.

Case 2: Suppose a is zero. By part 2 of the order axiom, a is not positive. Now suppose $a = 0$ and a is negative. Thus, $a \in \{0\}$ and $a \in \mathbb{R}^-$. By definition of the negative numbers, $a \notin \mathbb{R}^+ \cup \{0\}$. Thus, we have a contradiction. So if $a = 0$, a is neither negative nor positive.

Case 3: Suppose a is a negative number. By definition of negative numbers, $a \notin \mathbb{R}^+ \cup \{0\}$. Thus, a is neither positive nor zero.

Case 4: Suppose a is not positive, not zero, and not negative. Since a is not negative, by definition of a negative number, $a \in \mathbb{R}^+ \cup \{0\}$. Thus, we have a contradiction, since a is not positive or zero. So a must be either positive, negative, or zero. ■