Theorem 1.3.8 Part 3

Proposition: Let \(a \) be a real number. Prove that \(|a| = \max\{a, -a\} \).

Proof: Let \(a \) be a real number. Then there are three cases.

First suppose \(a > 0 \). Then by definition of absolute value \(|a| = a \) and by exercise 1.3.1 \(-a < 0 \). Because \(-a < 0 \) and \(0 < a \) then by transitivity \(-a < a \) which by definition of maximum means that \(\max\{a, -a\} = a = |a| \).

Next suppose that \(a < 0 \) and thus by definition of absolute value \(|a| = -a \) Again by exercise 1.3.1 \(-a > 0 \). Because \(a < 0 \) and \(0 < -a \) then by transitivity \(a < -a \) which by definition of maximum means that \(\max\{a, -a\} = -a = |a| \).

Lastly suppose that \(a = 0 \). Therefore \(|0| = 0 \) by definition of absolute value. Note that \(0 \geq 0 \) and thus by definition of maximum \(\max\{0, 0\} = 0 = |0| \).

Moreover because \(a \) is a real number it must fall into one of these three cases by Axiom II then \(|a| = \max\{a, -a\} \). ☐