1. Proof of theorem 3.1.7, 3 → 1

Proof. Suppose for every \(a \in U \) there exists \(r > 0 \) such that if \(d(x, a) < r \), then \(x \in U \). Let \(m \in U \), and let \(r_1 > 0 \) be the real number such that if \(d(x, m) < r \), then \(x \in U \). It follows by the definition of open balls that \(m \in B_{r_1}(m) \subset U \). Thus every element of \(U \) is contained in an open ball that is a subset of \(U \). It follows that \(U \) is the union of these open balls, and thus by the definition of open, \(U \) is open. \(\square \)