P3.1.10

Proposition 2.2 → 3: If there exists \(a \in X \) and \(r > 0 \) such that \(S \subseteq B_r(a) \), then given any \(b \in X \), there exists \(r > 0 \) such that \(S \subseteq B_r(b) \).

Proof

Let \(a \in X \) and \(r > 0 \) such that \(S \subseteq B_r(a) \), and let \(b \) be an arbitrary element in \(X \). By the triangle inequality property of metrics, \(d(b, a) + d(a, x) \geq d(b, x) \) for all \(x \in S \). Since \(x \in S \subseteq B_r(a) \), \(d(a, x) < r \), and so \(d(b, a) + r > d(b, a) + d(a, x) \geq d(b, x) \). Thus, \(d(b, a) + r > d(b, x) \). Define \(r_1 = d(b, a) + r \). Then, \(d(b, x) < r_1 \) for all \(x \in S \), and so \(x \in B_{r_1}(b) \) for all \(x \in S \) by definition of an open ball. Thus, \(S \subseteq B_{r_1}(b) \). Since \(b \) was arbitrary, it follows that there exists an \(r > 0 \) for each \(b \in X \) such that \(S \subseteq B_r(b) \). ■