1. 3.6.3 Prove a set C is closed iff if (a_n) is a sequence in C converging to x, then $x \in C$.

Proof. Let C be a closed set, and let (a_n) be a sequence in C converging to x. We break this into two cases. In the first case, suppose that $x \in (a_n)$. Since $a_n \in C$ for all $a_n \in (a_n)$, it follows that $x \in C$. Now suppose that $x \notin (a_n)$. It follows then that there exists a sequence of points in $C - \{x\}$ that converge to x. Therefore, by theorem 3.5.1, x is a limit point of C. Since C is closed, it follows that $x \in C$. Now suppose that if $(a_n) \in C$, and $(a_n) \to x$, then $x \in C$. Let x be a limit point of C. It follows that there exists a sequence of distinct points in C that converge to x. Therefore, there is a sequence in C that converges to x, so by hypothesis, $x \in C$. It follows that C contains all of its limit points, and therefore is closed.