Theorem 1. Let X be a metric space, and let $A \subseteq X$. Then the set of limit points of A is a closed subset of X.

Proof. Let S be the set of limit points of A, and let x be a limit point of S. We need to show that $x \in S$.

By Theorem 3.5.1(3), if $r_1 > 0$, then $B_{r_1}(x)$ contains infinitely many points of S; say s is one of them. (Note that this means that s is a limit point of A.) Since $B_{r_1}(x)$ is open, there exists $r > 0$ such that $B_r(s) \subseteq B_{r_1}(x)$. Again by Theorem 3.5.1(3), the ball $B_r(s)$ contains infinitely many points of A since s is a limit point of A. Thus we also have $B_r(x)$ with infinitely many points of A, so x is a limit point of A. Therefore, by the definition of S, $x \in S$. Since x was an arbitrary limit point of S, S is closed. □