Complete the proof of Theorem 9.2.6.
c) Use Theorem 9.2.2 to prove that the product rule holds.

Proof Let \(f \) and \(g \) be differentiable at \(x \in K \). By Theorem 9.2.2,

\[
 f(y) = f'(x)(y - x) + f(x) + r(y)
\]

\[
 g(y) = g'(x)(y - x) + g(x) + e(y)
\]

such that \(\frac{r(y)}{y-x} \) and \(\frac{e(y)}{y-x} \) both approach zero as \(y \to x \). Now consider \(fg \) at an arbitrary \(y \in K \).

\[
 (fg)(y) = f(x)g(x)
\]

\[
 = [f'(x)(y - x) + f(x) + r(y)][g'(x)(y - x) + g(x) + e(y)]
\]

\[
 = f'(x)g'(x)(y - x)^2 + f'(x)g(x)(y - x) + f'(x)e(y)(y - x) + f(x)g'(x)(y - x)
\]

\[
 + f(x)g(x) + f(x)e(y) + r(y)g'(x)(y - x) + r(y)g(x) + r(y)e(y)
\]

\[
 = [f'(x)g(x) + f(x)g'(x)](y - x) + f(x)g(x) + f'(x)g'(x)(y - x)^2 + f'(x)e(y)(y - x)
\]

\[
 + f(x)e(y) + r(y)g'(x)(y - x) + r(y)g(x) + r(y)e(y)
\]

(1)

Let \(R(y) = f'(x)g'(x)(y - x)^2 + f'(x)e(y)(y - x) + f(x)e(y) + r(y)g'(x)(y - x) + r(y)g(x) + r(y)e(y) \).

Now we can see that \(\frac{R(y)}{y-x} = f'(x)g'(x)(y - x) + f'(x)e(y) + \frac{f(x)e(y)}{y-x} + r(y)g'(x) + \frac{r(y)g(x)}{y-x} + \frac{r(y)e(y)}{y-x} \).

Each of these terms goes to zero as \(y \to x \), so \(\frac{R(y)}{y-x} \to 0 \) as \(y \to x \). Thus, \((fg)(x) \) is differentiable with derivative \(f'(x)g(x) + f(x)g'(x) \). ■