Half of part (a)

Proof. Assume that there exists \(a \in A \) such that for all \(n \in \mathbb{N} \) there exists \(j \geq n \) such that \(s_j = a \).

Construct \(S_n \) through induction.

Base Case: Let \(n = 1 \). There exists \(j \geq n \) such that \(S_j = a \). So, \(S_{n_1} = S_j = a \).

Induction Step: Assume up through \(S_{n_x} = a \) where \(n \) is an index of the original sequence. We know that \(n + 1 \) is a natural number, so there is a \(k \geq n + 1 \) such that \(S_k = a \). Therefore, we let \(S_{n(x+1)} = S_k = a \).