Let X be a metric space. Let (a_i) be a sequence in X converging to a. Show that the set consisting of all the points in the range of the sequence (a_i) together with the limit a is a closed subset of X.

Proof. By definition of closed set, $\text{ran}(a_i) \cup a$ is a closed set if it contains all its limit points. Call $\text{ran}(a_i) \cup a, S$. We will proceed by contradiction. Suppose that there exists $b \in X$ such that $b \neq a$, but b is also a limit point of S. Then by theorem 3.5.1 there exists a sequence (b_i) of points in $S - \{b\}$ converging to b. Each $b_i = a_j$, for $j \in \mathbb{N}$. Construct a subsequence of (b_i) as follows:

Let

\[
\begin{align*}
c_1 &= b_1 \text{ or the first term in } b_i \neq a \\
c_2 &= b_k \text{ for the least } k \text{ such that } j_k > j_1 \text{ and } b_k \neq a \\
c_n &= b_l \text{ for the least } l \text{ such that } j_l > j_{n-1} \text{ and } b_l \neq a
\end{align*}
\]

Note that (c_i) must converge to a though because it is a subsequence of (a_i). Further (c_i) must converge to b because it is a subsequence of (b_i). Therefore by the uniqueness of limits it must be that $a = b$. So it follows that there is only one limit point a of the set S and a is included in the set, therefore the set is closed. \qed