Let K be a bounded, nonempty subset of \mathbb{R}. Let $f : K \to \mathbb{R}$ be uniformly continuous. Prove f is bounded, or that $f(K)$ is a bounded subset of \mathbb{R}.

Since f is uniformly continuous, for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(a), f(b)) < \epsilon$ whenever $a, b \in K$ and $d_K(a, b) < \delta$. Let $\epsilon = 1$. So there exists a fixed δ such that $d_Y(f(a), f(b)) < 1$ whenever $a, b \in K$ and $d_K(a, b) < \delta$. Let k be an arbitrary element of K. Consider the open ball of radius δ centered at k. Since f is uniformly continuous, $f(B_\delta(k))$ has a radius of ϵ, or 1. We can cover the entirety of the domain K with balls and reach a finite size since K is bounded, and the image of all these balls do not differ from the previous or next ball by length 1. So the range consists of the union of n (finitely) many balls of radius 1. So $f(K)$, has a finite diameter (approximately n). Thus $f(K)$ is bounded and a subset of \mathbb{R}.

Q.E.D.