1. Since every group element has an inverse, \(c \) has an inverse \(d \). Thus \(c^2 = c \) implies \(d(c^2) = dc \), which in turn implies \((dc)c = dc \). Thus \(ec = e \), so \(c = e \).

2. \(a = (132), b = (23) \). Thus \(ab = (13) \), so \((ab)^{-1} = ab \). On the other hand, \(a^{-1}b^{-1} = (123)(23) = (12) \neq (ab)^{-1} \).

3. \((abcd)^{-1} = d^{-1}c^{-1}b^{-1}a^{-1}\).

6. In \(S_3 \), \((12)^2 = (13)^2 = (23)^2 = c^2 = e \). We have \textbf{four} solutions!

7. \(n = 5, 5, 2^1 = 1, \) so \(o(5) = 2 \).

11. \(x = a^{-1}b \) is a solution for \(ax = b \) and \(y = ba^{-1} \) is a solution for \(ya = b \). If \(x' \) is another solution to \(ax = b \), then \(ax = ax' \implies x = x' \). Similarly, if \(y' \) is a second solution for \(ya = b \), then \(ya = y'a \implies y = y' \). Thus, in both cases, the solution is unique.

15. \(a = (132) \) and \(b = (13) \), \(x = (23) \) is the solution to \(ax = b \) from Exercise 2. To get \(ya = b \), we need \(y = ba^{-1} = (13)(123) = (12) \neq x \).

17. Note that \((bab^{-1})^n = (bab^{-1})(bab^{-1}) \cdots (bab^{-1}) = ba^nb^{-1}\). If \(o(a) = n \), then \((bab^{-1})^n = ba^nb^{-1} = beb^{-1} = e \), so \(o(bab^{-1}) \leq n \). On the other hand, if \(m = o(bab^{-1}) \), then \((bab^{-1})^m = ba^mb^{-1} = e \), so \(ba^m = b \) and \(a^m = e \). Thus \(m \geq n \). Therefore, \(o(bab^{-1}) = o(a) \).

22. Let \(a, b \in G \). We must show that \(ab = ba^{-1} \). Let \(c = aba^{-1} \). Then \(ca = aba^{-1}a = ab \), so by assumption, \(b = c \). Thus \(ab = ba \).

28. Let \(n = o(ab), m = o(ba) \). Then \((ba)^{n+1} = (ba)(ba) \cdots (ba) = b(ab)(ab) \cdots (ab)a = ab(ab)^na = bea = ba \). That is, \((ba)^{n+1} = ba \), so \((ba)^n = e \). Therefore, \(m \leq n \). Reversing the roles of \(a \) and \(b \) shows that \(n \leq m \), as well, so \(m = n \).

30. Note first that the elements of order two are precisely the non-identity elements that are their own inverse. In any group, every element has an inverse. Let \(n \) be the number of non-identity elements that are self-inverse, and let \(b_1, \ldots, b_k \) have inverses \(c_1, \ldots, c_k \), respectively, where \(\{b_1, \ldots, b_k\} \) and \(\{c_1, \ldots, c_k\} \) are disjoint sets. Then \(|G| = 1 + n + 2k \). (The 1 is for the identity element.) Since \(|G| \) is even, \(n \geq 1 \), so some element has order two.

33. If we can show that \(b^3 = e \), it will follow immediately that \(ab = ba \) since we already know that \(ab = b^4a \).

Now \(ab = b^4a \implies b^2ab = b^6a = a \). Now \((b^2ab)b^5 = ab^7\), so \(b^2a = ab^5 = ab(b^4) = (b^4a)b^4 = b^4(ab)b^3 = b^4(b^4a)b^3 = b^6ab^3 = b^2ab^3 \). Thus \(e = b^3 \).