1. Certainly \(e_H \in G \), and \(e_H e_H = e_H \) since \(e_H \) is the identity of \(H \). By Exercise 1 of 7.2, \(e_H = e_G \).

3. I will apply the one-step subgroup test in each case.

(a) Since the identity is in every subgroup of \(G \), \(H \cap K \) is nonempty. Let \(a, b \in H \cap K \). Then \(a, b \in H \) and \(a, b \in K \), and \(ab^{-1} \in H \) and \(ab^{-1} \in K \) since both are subgroups of \(G \). Thus \(ab^{-1} \in H \cap K \), so \(H \cap K \leq G \).

(b) As before, \(\cap H_i \) is nonempty since it contains the group identity. If \(a, b \in \cap H_i \), then \(a, b \in H_i \) for each \(i \). Thus \(ab^{-1} \in H_i \) for each \(i \) since \(H_i \) is a subgroup. Therefore, \(ab^{-1} \in \cap H_i \), and \(\cap H_i \leq G \).

5. Since \(G_1 \leq G \) and \(H_1 \leq H \), \(G_1 \) and \(H_1 \) are nonempty, so \(G_1 \times H_1 \) is also nonempty. Let \(a, b \in G_1 \times H_1 \). Then \(a = (g_1, h_1), b = (g_2, h_2) \) for some \(g_1, g_2 \in G_1 \) and \(h_1, h_2 \in H_1 \). Now \(ab^{-1} = (g_1, h_1)(g_2^{-1}, h_2^{-1}) = (g_1g_2^{-1}, h_1h_2^{-1}) \in G_1 \times H_1 \) since \(G_1 \) and \(H_1 \) are groups.

7. \(T \neq \emptyset \) since \(e \in T \). Let \(a, b \in T \), and suppose that \(o(a) = m, o(b) = n \). Then \((ab^{-1})^{mn} = a^{mn}(b^{-1})^{mn} \)
using the fact that \(G \) is abelian, which becomes \((a^m)(b^n)^{-1} = e \). Therefore, \(T \leq G \).

10. Let \(b \in G \). We must show that \(ab = ba \). Consider \(b^{-1}ab \). Squaring this gives \((b^{-1}ab)^2b^{-1}ab = e \). Thus \(b^{-1}ab = e \) or \(b^{-1}ab = a \) since \(a \) is the only element of order 2. In the first case, we get \(ab = ba \), so \(ab = ba \).

19. Suppose that \(n \in \mathbb{Z} \) is a generator of \(\mathbb{Z} \). Then there is an integer \(m \) such that \(mn = 1 \). Thus \(m, n \in \{ \pm 1 \} \).

In particular, \(n = \pm 1 \).

21. (a) \((1, 1), 2(1, 1) = (2, 2) = (0, 2), 3(1, 1) = (3, 3) = (1, 0), 4(1, 1) = (0, 1), 5(1, 1) = (1, 2), 6(1, 1) = (0, 0) \). Thus \((1, 1) \) generates all of \(\mathbb{Z}_2 \times \mathbb{Z}_3 \), so \(\mathbb{Z}_2 \times \mathbb{Z}_3 \) is cyclic.

(b) \(\mathbb{Z}_2 \times \mathbb{Z}_4 \) is generated by \((1, 0) \) and \((0, 1) \). However, it is not cyclic: if \((a, b) \in \mathbb{Z}_2 \times \mathbb{Z}_4 \), then \(4(a, b) = (0, 0) \), but \(\mathbb{Z}_2 \times \mathbb{Z}_4 \) is cyclic.

25. Since \(e \in C(a), C(a) \neq \emptyset \). I will apply the two-step subgroup test. Let \(x, y \in C(a) \). Then \((xy)a = x(ya) = x(ay) = (ax)y = a(xy) \), so \(xy \in C(a) \). Since \(ax = xa, x^{-1}a = ax^{-1} \), so \(x^{-1} \in C(a) \), as well. Therefore, \(C(a) \leq G \).

31. Since \(H \neq \emptyset \), \(x^{-1}Hx \neq \emptyset \). Let \(a, b \in x^{-1}Hx \). Then \(a = x^{-1}hx, b = x^{-1}kx \) for some \(h, k \in H \). Now \(ab^{-1} = (x^{-1}hx)(x^{-1}kx)^{-1} = (x^{-1}hx)(x^{-1}k^{-1}x) = x^{-1}hk^{-1}x \in x^{-1}Hx \), so \(x^{-1}Hx \leq G \).

43. Suppose that \(\frac{a}{b} \in \mathbb{Q} \) generates \(\mathbb{Q} \). Then there is a positive integer \(n \) such that \(n\frac{a}{b} = \frac{a}{2b} \). But this implies that \(2abn = ab \), so \(2n = 1 \), which is impossible. Therefore, \(\mathbb{Q} \) is not cyclic.