Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.
Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

1. Induct on the order p^n of G.
Strategy ("Peel off" a cyclic summand (for FTFAG))

Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

1. Induct on the order p^n of G.
2. Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

1. Induct on the order p^n of G.
2. Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
3. Conclude $|b| = p$ and thus $\langle a \rangle \cap \langle b \rangle = \{0\}$.

Strategy ("Peel off" a cyclic summand (for FTFAG))
Strategy (“Peel off” a cyclic summand (for FTFAG))

Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

1. Induct on the order p^n of G.
2. Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
3. Conclude $|b| = p$ and thus $\langle a \rangle \cap \langle b \rangle = \{0\}$.
4. Show $a + \langle b \rangle$ has maximal order in $G/\langle b \rangle$, which has order p^{n-1}.
Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

1. Induct on the order p^n of G.
2. Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
3. Conclude $|b| = p$ and thus $\langle a \rangle \cap \langle b \rangle = \{0\}$.
4. Show $a + \langle b \rangle$ has maximal order in $G/\langle b \rangle$, which has order p^{n-1}.
5. Write $G/\langle b \rangle = \langle a + \langle b \rangle \rangle \oplus \overline{K}$ for some $\overline{K} \leq G/\langle b \rangle$. Let $K \leq G$ be the “pullback” of \overline{K}.
Strategy ("Peel off" a cyclic summand (for FTFAG))

Lemma
Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

1. Induct on the order p^n of G.
2. Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
3. Conclude $|b| = p$ and thus $\langle a \rangle \cap \langle b \rangle = \{0\}$.
4. Show $a + \langle b \rangle$ has maximal order in $G / \langle b \rangle$, which has order p^{n-1}.
5. Write $G / \langle b \rangle = \langle a + \langle b \rangle \rangle \oplus \overline{K}$ for some $\overline{K} \leq G / \langle b \rangle$. Let $K \leq G$ be the “pullback” of \overline{K}.
6. Show $\langle a \rangle \cap K = \{0\}$ and $G = a + K$ (counting argument).
Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

1. Induct on the order p^n of G.
2. Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
3. Conclude $|b| = p$ and thus $\langle a \rangle \cap \langle b \rangle = \{0\}$.
4. Show $a + \langle b \rangle$ has maximal order in $G/\langle b \rangle$, which has order p^{n-1}.
5. Write $G/\langle b \rangle = \langle a + \langle b \rangle \rangle \oplus \overline{K}$ for some $\overline{K} \leq G/\langle b \rangle$. Let $K \leq G$ be the “pullback” of \overline{K}.
6. Show $\langle a \rangle \cap K = \{0\}$ and $G = a + K$ (counting argument).
Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

1. Induct on the order p^n of G.
2. Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
3. Conclude $|b| = p$ and thus $\langle a \rangle \cap \langle b \rangle = \{0\}$.
4. Show $a + \langle b \rangle$ has maximal order in $G/\langle b \rangle$, which has order p^{n-1}.
5. Write $G/\langle b \rangle =\langle a + \langle b \rangle \rangle \oplus \overline{K}$ for some $\overline{K} \leq G/\langle b \rangle$. Let $K \leq G$ be the “pullback” of \overline{K}.
6. Show $\langle a \rangle \cap K = \{0\}$ and $G = a + K$ (counting argument).
Strategy (“Peel off” a cyclic summand (for FTFAG))

Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = < a > \oplus K$.

✓ Induct on the order p^n of G.
✓ Choose an element $b \in G \setminus < a >$ of minimal order and use b to construct an element c of order p in $G \setminus < a >$.
✓ Conclude $|b| = p$ and thus $< a > \cap < b > = \{0\}$.

4. Show $a + < b >$ has maximal order in $G / < b >$, which has order p^{n-1}.

5. Write $G / < b > = < a + < b >= \oplus \overline{K}$ for some $\overline{K} \leq G / < b >$. Let $K \leq G$ be the “pullback” of \overline{K}.

6. Show $< a > \cap K = \{0\}$ and $G = a + K$ (counting argument).
Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

✓ Induct on the order p^n of G.
✓ Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
✓ Conclude $|b| = p$ and thus $\langle a \rangle \cap \langle b \rangle = \{0\}$.
✓ Show $a + \langle b \rangle$ has maximal order in $G/\langle b \rangle$, which has order p^{n-1}.

5. Write $G/\langle b \rangle = \langle a + \langle b \rangle \rangle \oplus \overline{K}$ for some $\overline{K} \leq G/\langle b \rangle$. Let $K \leq G$ be the “pullback” of \overline{K}.
6. Show $\langle a \rangle \cap K = \{0\}$ and $G = a + K$ (counting argument).
Lemma
Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

✓ Induct on the order p^n of G.
✓ Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
✓ Conclude $|b| = p$ and thus $\langle a \rangle \cap \langle b \rangle = \{0\}$.
✓ Show $a + \langle b \rangle$ has maximal order in $G/\langle b \rangle$, which has order p^{n-1}.
✓ Write $G/\langle b \rangle = \langle a + \langle b \rangle \rangle \oplus \overline{K}$ for some $\overline{K} \leq G/\langle b \rangle$. Let $K \leq G$ be the “pullback” of \overline{K}.
6. Show $\langle a \rangle \cap K = \{0\}$ and $G = a + K$ (counting argument).
Lemma

Lemma: Let G be a finite abelian p-group, and let a be an element of maximal order p in G. Then there is a subgroup K of G such that $G = \langle a \rangle \oplus K$.

✓ Induct on the order p^n of G.
✓ Choose an element $b \in G \setminus \langle a \rangle$ of minimal order and use b to construct an element c of order p in $G \setminus \langle a \rangle$.
✓ Conclude $|b| = p$ and thus $\langle a \rangle \cap \langle b \rangle = \{0\}$.
✓ Show $a + \langle b \rangle$ has maximal order in $G/\langle b \rangle$, which has order p^{n-1}.
✓ Write $G/\langle b \rangle = \langle a + \langle b \rangle \rangle \oplus \overline{K}$ for some $\overline{K} \leq G/\langle b \rangle$. Let $K \leq G$ be the “pullback” of \overline{K}.
✓ Show $\langle a \rangle \cap K = \{0\}$ and $G = a + K$ (counting argument).