Strategy (First Sylow Theorem)

Theorem

Let G be a finite group and p a prime such that $p^k || G$. Then G has a subgroup of order p^k.

Strategy (First Sylow Theorem)

Theorem
Let G be a finite group and p a prime such that $p^k | |G|$. Then G has a subgroup of order p^k.

1. Induct on $|G|$.
Strategy (First Sylow Theorem)

Theorem

Let G be a finite group and p a prime such that $p^k | |G|$. Then G has a subgroup of order p^k.

1. Induct on $|G|$.
2. Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
Theorem

Let G be a finite group and p a prime such that $p^k | |G|$. Then G has a subgroup of order p^k.

1. Induct on $|G|$.
2. Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
3. Case 1: $p \nmid [G : C(a_i)]$ for some i.

Strategy (First Sylow Theorem)

Theorem
Let G be a finite group and p a prime such that $p^k || G$. Then G has a subgroup of order p^k.

1. Induct on $|G|$.
2. Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
3. Case 1: $p \nmid [G : C(a_i)]$ for some i.
4. Case 2: $p|[G : C(a_i)]$ for all i.
Strategy (First Sylow Theorem)

Theorem

Let G be a finite group and p a prime such that $p^k \mid |G|$. Then G has a subgroup of order p^k.

1. Induct on $|G|$.
2. Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
3. Case 1: $p \nmid [G : C(a_i)]$ for some i.
4. Case 2: $p|[G : C(a_i)]$ for all i.
5. Now $p\mid |Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.
Strategy (First Sylow Theorem)

Theorem
Let G be a finite group and p a prime such that $p^k || |G|$. Then G has a subgroup of order p^k.

1. Induct on $|G|$.
2. Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
3. Case 1: $p \nmid [G : C(a_i)]$ for some i.
4. Case 2: $p|[G : C(a_i)]$ for all i.
5. Now $p||Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.
6. The induction hypothesis applied to G/N gives $T \leq G/N$ with $|T| = p^{k-1}$.
Strategy (First Sylow Theorem)

Theorem

Let G be a finite group and p a prime such that $p^k | |G|$. Then G has a subgroup of order p^k.

1. Induct on $|G|$.
2. Apply the class equation in combination with $|C| = [G: C(a)]$, where $a \in C$, to count elements in G.
3. Case 1: $p \not| [G: C(a_i)]$ for some i.
4. Case 2: $p | [G: C(a_i)]$ for all i.
5. Now $p | |Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.
6. The induction hypothesis applied to G/N gives $T \leq G/N$ with $|T| = p^{k-1}$.
7. The pullback H of T is the subgroup we want (see Theorem 7.44).
Theorem

Let G be a finite group and p a prime such that $p^k || |G|$. Then G has a subgroup of order p^k.

1. Induct on $|G|$.
2. Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
3. Case 1: $p \nmid [G : C(a_i)]$ for some i.
4. Case 2: $p|[G : C(a_i)]$ for all i.
5. Now $p || Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.
6. The induction hypothesis applied to G/N gives $T \leq G/N$ with $|T| = p^{k-1}$.
7. The pullback H of T is the subgroup we want (see Theorem 7.44).
Strategy (First Sylow Theorem)

Theorem

Let G be a finite group and p a prime such that $p^k | |G|$. Then G has a subgroup of order p^k.

✓ Induct on $|G|$.

✓ Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.

3. Case 1: $p \not| [G : C(a_i)]$ for some i.

4. Case 2: $p | [G : C(a_i)]$ for all i.

5. Now $p | |Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.

6. The induction hypothesis applied to G/N gives $T \leq G/N$ with $|T| = p^{k-1}$.

7. The pullback H of T is the subgroup we want (see Theorem 7.44).
Strategy (First Sylow Theorem)

Theorem
Let G be a finite group and p a prime such that $p^k | |G|$. Then G has a subgroup of order p^k.

✓ Induct on $|G|$.
✓ Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
✓ Case 1: $p \nmid [G : C(a_i)]$ for some i.
4. Case 2: $p|[G : C(a_i)]$ for all i.
5. Now $p||Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.
6. The induction hypothesis applied to G/N gives $T \leq G/N$ with $|T| = p^{k-1}$.
7. The pullback H of T is the subgroup we want (see Theorem 7.44).
Strategy (First Sylow Theorem)

Theorem
Let G be a finite group and p a prime such that $p^k || G$. Then G has a subgroup of order p^k.

✓ Induct on $|G|$.
✓ Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
✓ Case 1: $p \nmid [G : C(a_i)]$ for some i.
✓ Case 2: $p|[G : C(a_i)]$ for all i.
5. Now $p || Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.
6. The induction hypothesis applied to G/N gives $T \leq G/N$ with $|T| = p^{k-1}$.
7. The pullback H of T is the subgroup we want (see Theorem 7.44).
Strategy (First Sylow Theorem)

Theorem
Let G be a finite group and p a prime such that $p^k || G$. Then G has a subgroup of order p^k.

✓ Induct on $|G|$.
✓ Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
✓ Case 1: $p \not| [G : C(a_i)]$ for some i.
✓ Case 2: $p|[G : C(a_i)]$ for all i.
✓ Now $p||Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.

6. The induction hypothesis applied to G/N gives $T \leq G/N$ with $|T| = p^{k-1}$.

7. The pullback H of T is the subgroup we want (see Theorem 7.44).
Strategy (First Sylow Theorem)

Theorem
Let G be a finite group and p a prime such that $p^k || |G|$. Then G has a subgroup of order p^k.

✓ Induct on $|G|$.
✓ Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
✓ Case 1: $p \nmid [G : C(a_i)]$ for some i.
✓ Case 2: $p|[G : C(a_i)]$ for all i.
✓ Now $p||Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.
✓ The induction hypothesis applied to G/N gives $T \leq G/N$ with $|T| = p^{k-1}$.
7. The pullback H of T is the subgroup we want (see Theorem 7.44).
Strategy (First Sylow Theorem)

Theorem

*Let G be a finite group and p a prime such that $p^k || |G|$. Then G has a subgroup of order p^k."

✓ Induct on $|G|$.
✓ Apply the class equation in combination with $|C| = [G : C(a)]$, where $a \in C$, to count elements in G.
✓ Case 1: $p \nmid [G : C(a_i)]$ for some i.
✓ Case 2: $p | [G : C(a_i)]$ for all i.
✓ Now $p || Z(G)|$, so $Z(G)$ has a (normal!) subgroup N of order p.
✓ The induction hypothesis applied to G/N gives $T \leq G/N$ with $|T| = p^{k-1}$.
✓ The pullback H of T is the subgroup we want (see Theorem 7.44).