Recent Talks

"The Singular Value Decomposition and a Democratic Method of Orthogonalization"

The Fundamental Theorem of Arithmetic states that any positive integer n can be factored uniquely as a product of primes. Factorization of real numbers (elements of \mathbb{R}) is hardly unique; if $x \in \mathbb{R}$ and $y \in \mathbb{R} \backslash\{0\}$, then x can be factored as $x=b y$ where $b=\frac{x}{y}$. If matrices $A, B \in \mathbb{R}^{n \times n}$ are non-singular, then A can be factored as $A=B C$ where $C=B^{-1} A$. But what about non-singular matrices? Or even non-square matrices? There are several factorizations that can be applied to even singular matrices. Perhaps the most important of these is the singular value decomposition, or SVD.

We'll assume $m \geq n$. The (full) SVD of a $\mathbb{R}^{m \times n}$ matrix A is $A=U \Sigma V^{T}$ where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, V^{T} denotes the transpose of V, and Σ is a diagonal matrix in $\mathbb{R}^{m \times n}$ possessing nonnegative entries, with the same rank as A. We will introduce the SVD from a geometric standpoint, using a 3×3 matrix as an example. We'll then eliminate some redundancy in the full SVD by introducing the reduced SVD, where $U \in \mathbb{R}^{m \times n}$ and $\Sigma \in \mathbb{R}^{n \times n}$. Note that U is no longer an orthogonal matrix, but the columns of U are orthogonal. Now U and V^{*} are of compatible size for the multiplication $U V^{T}$ to be defined. The matrix $T=U V^{T} \in \mathbb{R}^{m \times n}$ has orthogonal columns which are as close as possible to the columns of A. Besides the mathematical beauty of this method of orthogonalization of the column vectors of A, it possesses application in the sciences, which we'll discuss briefly.

