Group	Exam	2
-------	------	---

Name:

Math 141

Name of group member:

Name of group member:

Problem 1: A The graph of the function f(x) is given below. On the same axes, graph the derivative f'(x).

List the *x*-values where the function *f* is not continuous.

List the x-values where the function f is not differentiable.

B Use the definition of the derivative to explain why the following derivative formula holds.

(f(x) - g(x))' = f'(x) - g'(x)

Group	Exam	2
-------	------	---

Math 141

Name:

Name of group member:

Name of group member:

Problem 2: An object moves along a horizontal line and it's position can be modeled by a quadratic function of the form $at^2 + bt + c$. Assume that the initial position of the object is at the zero mark of the horizontal line. If the position of the object at t = 2 seconds is at the 16 meter mark, and the velocity at t = 2 seconds is 28m/s, find the coefficients a, b, and c so that the function $s(t) = at^2 + bt + c$ models the position of the object.

Graph the position function s(t) in the space provided.

In a sentence or two, describe the movement of the object over the time interval from t = 0 to t = 2.

At what time during the interval $0 \le t \le 2$ is the object farthest from its initial position? What is the position of the object at this time? Use calculus to justify your answer.

Group Exam 2

Name:

Math 141

Name of group member:

Name of group member:

Problem 3: A Assume that f(x) and g(x) are differentiable functions about which we know very little. In fact, assume that all we know about f and g is the following table of values.

x	f(x)	f'(x)	g(x)	g'(x)
-2	3	1	-5	8
-1	-9	7	4	1
0	5	9	9	-3
1	3	-3	2	6
2	-5	3	8	?

1. Let $h(x) = e^x f(x)$. What is h'(0)?

2. Let j(x) = -4f(x)g(x). What is j'(1)?

3. Let
$$k(x) = \frac{xf(x)}{g(x)}$$
. What is $k'(-2)$?

4. Let
$$w(x) = x^3 g(x)$$
. If $w'(2) = -48$, what is $g'(2)$?

B Graph the function $f(x) = \cos(x)$ and its derivative in the space provided. (Label f and f'.)

Circle the function that is a best guess for the derivative of $\cos(x)$:

 $\sin(x)$ $1 - \cos^2(x)$ $-\sin(x)$ Signature line: