Name of group member:

Problem 1: A The graph of the function $f(x)$ is given below. On the same axes, graph the derivative $f^{\prime}(x)$.

List the x-values where the function f is not continuous.
List the x-values where the function f is not differentiable. \qquad
B Use the definition of the derivative to explain why the following derivative formula holds.

$$
(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)
$$

\qquad

Problem 2: An object moves along a horizontal line and it's position can be modeled by a quadratic function of the form $a t^{2}+b t+c$. Assume that the initial position of the object is at the zero mark of the horizontal line. If the position of the object at $t=2$ seconds is at the 16 meter mark, and the velocity at $t=2$ seconds is $28 \mathrm{~m} / \mathrm{s}$, find the coefficients a, b, and c so that the function $s(t)=a t^{2}+b t+c$ models the position of the object.

Graph the position function $s(t)$ in the space provided.

In a sentence or two, describe the movement of the object over the time interval from $t=0$ to $t=2$.

At what time during the interval $0 \leq t \leq 2$ is the object farthest from its initial position? What is the position of the object at this time? Use calculus to justify your answer.
\qquad

Name of group member:
Problem 3: A Assume that $f(x)$ and $g(x)$ are differentiable functions about which we know very little. In fact, assume that all we know about f and g is the following table of values.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-2	3	1	-5	8
-1	-9	7	4	1
0	5	9	9	-3
1	3	-3	2	6
2	-5	3	8	$?$

1. Let $h(x)=e^{x} f(x)$. What is $h^{\prime}(0)$?
2. Let $j(x)=-4 f(x) g(x)$. What is $j^{\prime}(1)$?
3. Let $k(x)=\frac{x f(x)}{g(x)}$. What is $k^{\prime}(-2)$?
4. Let $w(x)=x^{3} g(x)$. If $w^{\prime}(2)=-48$, what is $g^{\prime}(2)$?

B Graph the function $f(x)=\cos (x)$ and its derivative in the space provided. (Label f and f^{\prime}.)

Circle the function that is a best guess for the derivative of $\cos (x)$:
$\sin (x)$

$$
1-\cos ^{2}(x)
$$

$-\sin (x)$
Signature line: \qquad

