Math 141

Name of group member:
Problem 1: A rectangular storage container with an open top is to have a volume of $10 \mathrm{~m}^{3}$. The length of its base is twice the width. Material for the base costs $\$ 10$ per square meter. Material for the sides costs $\$ 6$ per square meter. Find the cost of materials for the cheapest such container and the dimensions that attain the minimum cost.

Cost of cheapest container: \qquad Dimensions: \qquad
\qquad

Name of group member:

Problem 2: Part A. Fill in the blanks.

If c is a critical number of $f(x)$ and $f^{\prime \prime}(c)=3$, then $(c, f(c))$ is a local \qquad of $f(x)$.

If c is a critical number of $f(x)$ and $f^{\prime \prime}(c)=-3$, then $(c, f(c))$ is a local \qquad of $f(x)$.

Part B. The graph of the derivative of f is given below. Use this graph to sketch the graph of $f(x)$ in the space provided below. Include the x-values of all local maximums and minimums and all inflection points in your sketch of $f(x)$.

\qquad

Name of group member:

Problem 3: Part A. Use calculus to sketch the graph of the function whose equation is provided below. Include all local maximums and minimums and all inflection points in your sketch of $f(x)$.

$$
f(x)=\frac{1}{2} x+\cos (x) \quad \text { on the interval }[0,2 \pi]
$$

Signature line: \qquad

