1. (a) The point $(-1,-2)$ is on the graph of f, so $f(-1)=-2$.
(b) When $x=2, y$ is about 2.8 , so $f(2) \approx 2.8$.
(c) $f(x)=2$ is equivalent to $y=2$. When $y=2$, we have $x=-3$ and $x=1$.
(d) Reasonable estimates for x when $y=0$ are $x=-2.5$ and $x=0.3$.
(e) The domain of f consists of all x-values on the graph of f. For this function, the domain is $-3 \leq x \leq 3$, or $[-3,3]$.

The range of f consists of all y-values on the graph of f. For this function, the range is $-2 \leq y \leq 3$, or $[-2,3]$.
(f) As x increases from -1 to $3, y$ increases from -2 to 3 . Thus, f is increasing on the interval $[-1,3]$.
5. No, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails the Vertical Line Test.
6. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is $[-2,2]$ and the range is $[-1,2]$.
7. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is $[-3,2]$ and the range is $[-3,-2) \cup[-1,3]$.
8. No, the curve is not the graph of a function since for $x=0, \pm 1$, and ± 2, there are infinitely many points on the curve.
17. Height \uparrow

28. $f(x)=(5 x+4) /\left(x^{2}+3 x+2\right)$ is defined for all x except when $0=x^{2}+3 x+2 \Leftrightarrow 0=(x+2)(x+1) \Leftrightarrow x=-2$ or -1 , so the domain is $\{x \in \mathbb{R} \mid x \neq-2,-1\}=(-\infty,-2) \cup(-2,-1) \cup(-1, \infty)$.
35. $f(t)=t^{2}-6 t$ is defined for all real numbers, so the domain is \mathbb{R}, or $(-\infty, \infty)$. The graph of f is a parabola opening upward since the coefficient of t^{2} is positive. To find the t-intercepts, let $y=0$ and solve for t.
$0=t^{2}-6 t=t(t-6) \quad \Rightarrow \quad t=0$ and $t=6$. The t-coordinate of the vertex is halfway between the t-intercepts, that is, at $t=3$. Since $f(3)=3^{2}-6 \cdot 3=-9$, the vertex is $(3,-9)$.

38. $F(x)=|2 x+1|= \begin{cases}2 x+1 & \text { if } 2 x+1 \geq 0 \\ -(2 x+1) & \text { if } 2 x+1<1\end{cases}$

$$
= \begin{cases}2 x+1 & \text { if } x \geq-\frac{1}{2} \\ -2 x-1 & \text { if } x<-\frac{1}{2}\end{cases}
$$

The domain is \mathbb{R}, or $(-\infty, \infty)$.

48. $x^{2}+(y-2)^{2}=4 \Leftrightarrow(y-2)^{2}=4-x^{2} \Leftrightarrow y-2= \pm \sqrt{4-x^{2}} \Leftrightarrow y=2 \pm \sqrt{4-x^{2}}$. The top half is given by the function $f(x)=2+\sqrt{4-x^{2}},-2 \leq x \leq 2$.
3. (a) (graph 3) The graph of f is shifted 4 units to the right and has equation $y=f(x-4)$.
(b) (graph 1) The graph of f is shifted 3 units upward and has equation $y=f(x)+3$.
(c) (graph 4) The graph of f is shrunk vertically by a factor of 3 and has equation $y=\frac{1}{3} f(x)$.
(d) (graph 5) The graph of f is shifted 4 units to the left and reflected about the x-axis. Its equation is $y=-f(x+4)$.
(e) (graph 2) The graph of f is shifted 6 units to the left and stretched vertically by a factor of 2 . Its equation is $y=2 f(x+6)$.
10. $y=1-x^{2}=-x^{2}+1$: Start with the graph of $y=x^{2}$, reflect about the x-axis, and then shift 1 unit upward.

