Math 141, Test 2, practice problems

1. (Definition of derivative) Use the definition of the derivative f^{\prime} to find derivative of
(a) $f(x)=\sqrt{x}$ at the given $x=1$.
(b) $f(x)=x^{3}$ at $x=2$.
(c) $f(x)=\frac{1}{x^{2}}$ at the given $x=1$.
(d) $f(x)=\sqrt{4 x+3}$ at any $x>-\frac{3}{4}$.
2. (A meaning of derivative, slope of tangent line) Consider the graph of $f(x)=x^{3}$. Find the equation of the tangent line at the point $(2,8)$ on the graph.
3. (Differentiabilty implies continuity. But, not the converse) Find an example of function which is continuous at $x=0$, but not differentiable at $x=0$.
4. (Power rule) Use power rules to find the deriavtives f^{\prime} of
(a) $f(x)=x^{3}-x^{2}-5 x+8-\frac{1}{x^{5}}$.
(b) $f(x)=3 x^{5}+\frac{2}{\sqrt{x}}$.
(c) $f(x)=1-x^{2}+3 x^{3} \sqrt{x}$.
5. (Derivative, rate of change, velocity) On top of a cliff with height 73.5 m we throw a ball upward. The height of the ball from the ground follows the function $h(t)=73.5+9.8 t-4.9 t^{2}$.
(a) Find the maximum height the ball can reach.
(b) Find the velocity when the ball hits the ground.
6. (Derivative, rate of change, velocity) A particle is moving along a line with displacement function $s(t)=$ $t^{3}-6 t^{2}+9 t$.
(a) When are the moments the particle change its direction.
(b) Find the total distance the particle traveled in $t=4$.
7. (Derivative of e^{x}) Find the derivative f^{\prime} of the function $f(x)=e^{x+1}-2 x+\ln 2$.
8. (Product rule, Quotient rule) Find the deriavtives f^{\prime} of the following functions.
(a) $f(x)=\left(x^{2}-3 x+1\right)(3 x+2)$.
(b) $f(x)=e^{x}\left(\sqrt{x}+5 x^{3}\right)$.
(c) $f(x)=\frac{x+2}{\sqrt{x}-2}$ at $x=1$.
(d) $f(x)=\frac{e^{x}}{3-x}$.

Math 141, Test 2, practice problems

9. (Derivatives of trigonometric functions) Find the derivatives f^{\prime} of the following functions.
(a) $f(x)=\sin x+\tan x-\sec x$.
(b) $f(x)=\sec x \tan x \quad$ at $x=\frac{\pi}{3}$.
(c) $f(x)=x e^{x} \sin x$.
(d) $f(x)=\frac{\tan x-1}{\sec x} \quad$ at $x=\frac{\pi}{3}$.
10. (An important limit) Taking $f(x)=\sin x$, we observed

$$
1=\cos 0=f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{\sin x-\sin 0}{x-0}=\lim _{x \rightarrow 0} \frac{\sin x}{x}
$$

Use above identity to find the limit of

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{3 x}
$$

11. (Chain rule) Find the derivatives f^{\prime} of the following functions.
(a) $f(x)=\left(3 x^{3}-2 x^{2}+5\right)^{331}$.
(b) $f(x)=\sqrt{1-x^{2}}$.
(c) $f(x)=\sin \left(x^{3}\right)$.
(d) $f(x)=\sec ^{2} x-\tan ^{2} x$.
(e) $f(x)=(\sin (\tan x))^{3}$.
(f) $f(x)=e^{\cos x}$.
(g) $f(x)=2^{-x^{2}}$.
(h) $f(x)=x \sin \left(\frac{1}{x}\right)$ for $x>0$.
12. (Implicit differentiation) Consider the graph of $\sqrt{x}+\sqrt{y}=1$ in the $x y$-plane. Find the equation of the tangent line at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$ on the graph.
13. (Implicit differentiation) Find the equation of the tangent line to $x^{3}+y^{3}=4 x y$ at the point $(2,2)$.
14. (Implicit differentiation) Find the equation of the tangent line to $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ at the point $(3,1)$.
15. (Shapes of the inverse trigonometirc functions) Sketch the graph of inverse trigonometric functions $y=$ $\sin ^{-1} x, y=\cos ^{-1} x, y=\tan ^{-1} x$. What are the domains and ranges.
16. (Derivatives of inverse trigonometric functions) Find the derivatives f^{\prime} of the following functions.
(a) $f(x)=x \arctan \sqrt{x}$.
(b) $f(x)=\sin ^{-1}\left(x^{3}\right)$.

〈Answer keys〉

1. (a) $f^{\prime}(1)=\frac{1}{2}$
(b) $f^{\prime}(2)=12$
(c) $f^{\prime}(1)=-2$
(d) $f^{\prime}(x)=\frac{2}{\sqrt{4 x+3}}$
2. $y=12 x-16$
3. $f(x)=|x|$
4. (a) $f^{\prime}(x)=3 x^{2}-2 x-5+\frac{5}{x^{6}}$
(b) $f^{\prime}(x)=15 x^{4}-\frac{1}{x^{3 / 2}}$
(c) $f^{\prime}(x)=-2 x+\frac{21}{2} x^{5 / 2}$
5. (a) 78.4 m (b) $-39.2 \mathrm{~m} / \mathrm{s}$
6. (a) $t=1, t=3 \quad$ (b) 12
7. $f^{\prime}(x)=e^{x+1}-2$
8. (a) $f^{\prime}(x)=9 x^{2}-14 x-3$
(b) $f^{\prime}(x)=e^{x}\left(\sqrt{x}+5 x^{3}+\frac{1}{2 \sqrt{x}}+15 x^{2}\right)$
(c) $-\frac{5}{2}$
(d) $f^{\prime}(x)=\frac{e^{x}(4-x)}{(3-x)^{2}}$
9. (a) $f^{\prime}(x)=\cos x+\sec ^{2} x-\sec x \tan x$
(b) $f^{\prime}\left(\frac{\pi}{3}\right)=14$
(c) $f^{\prime}(x)=e^{x}(\sin x+x \sin x+x \cos x)$
(d) $f^{\prime}\left(\frac{\pi}{3}\right)=\frac{1+\sqrt{3}}{2}$
10. $\frac{4}{3}$
11. (a) $f^{\prime}(x)=331\left(3 x^{3}-2 x^{2}+5\right)^{330}\left(9 x^{2}-4 x\right) \quad$ (b) $f^{\prime}(x)=-\frac{x}{\sqrt{1-x^{2}}} \quad$ (c) $f^{\prime}(x)=3 x^{2} \cos \left(x^{3}\right)$
$\begin{array}{lll}\text { (d) } f^{\prime}(x)=0 & \text { (e) } f^{\prime}(x)=3(\sin (\tan x))^{2} \cos (\tan x) \sec ^{2} x & \text { (f) } f^{\prime}(x)=-\sin x e^{\cos x}\end{array}$
(g) $f^{\prime}(x)=-2 x 2^{-x^{2}}$
(h) $f^{\prime}(x)=\sin \left(\frac{1}{x}\right)-\frac{1}{x} \cos \left(\frac{1}{x}\right)$
12. $y=-x+\frac{1}{2}$
13. $y=-x+4$
14. $y=-\frac{9}{13} x+\frac{40}{13}$
15. Lecture note
16. (a) $f^{\prime}(x)=\arctan \sqrt{x}+\frac{\sqrt{x}}{2(1+x)} \quad$ (b) $f^{\prime}(x)=\frac{3 x^{2}}{\sqrt{1-x^{6}}}$
