## MATH 142 Midterm Exam \#1

## October 6, 2006

NAME: $\qquad$

- No calculators are allowed on this exam.
- Answers such as $\frac{23 \cdot 5}{30}-\frac{2^{5}}{3 \cdot 34}$ are perfectly fine!! However you MUST simplify expressions such as $\sin (\pi / 3)$.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please include all information about u-substitutions, and use correct mathematical grammar in the presentation of your solution.

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 20 |  |
| 2 | 30 |  |
| 3 | 15 |  |
| 4 | 15 |  |
| 5 | 20 |  |
| total | 100 |  |

$$
\sum_{i=1}^{n} a=a \cdot n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

1. Definition of the Integral. Recall the definition of the definite integral for a continuous function $\overline{f(x)}$ on the interval $[a, b]$.

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Calculate the integral below using the definition of the integral.

$$
\int_{0}^{3} 5-x^{2} d x
$$

(a) First, find the following quantities:

$$
\Delta x=
$$

$$
x_{i}=
$$

$$
f\left(x_{i}\right)=
$$

$\qquad$
(b) Next, using the quantities above and the summation formulas on the front page of the exam, simplify $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ into an expression without the summation notation.
(c) Last, evaluate the limit, $\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x\right)$.

Note: you can check your answer by using the Fundamental Theorem of Calculus.
2. Integrals. Evaluate the following definite and indefinite integrals.
(a) $\int\left(t^{2}-7 \sqrt{t}+45 t\right) t^{-2} d t$
(b) $\int x \sqrt{5-x} d x$
(c) $\int_{0}^{4 / 3} \frac{3}{9 x^{2}+16} d x$
3. Let $f(t)$ be the continuous function graphed below and let $g(x)=\int_{-3}^{x} f(t) d t$
(a) Evaluate $g(4)$.
(b) Find $g^{\prime}(x)$ and evaluate $g^{\prime}(0)$.
(c) Find the intervals over which $g(x)$ is concave up.
4. Evaluate the following limits. Show work and indicate if/when L'Hôpital's rule is used.
(a) $\lim _{x \rightarrow 0} \frac{1-\cos (4 x)}{1-\cos (3 x)}$
(b) $\lim _{x \rightarrow \infty} x^{2} \ln \left(x^{2}+x\right)$
5. Volume. Note: On this problem, you can earn partial credit for parts (b)-(e) by sketching an arbitrary slice of the volume in the space provided in the left margin.
Consider the region, $R$ which is bounded between the curves

$$
y=5 \quad y=x+1 \quad y=-2 x+7
$$

(a) Sketch the region and label the points of intersection.
(b) Write an integral for the volume of the solid formed by rotating the region $R$ about the $y$-axis. DO NOT evaluate the integral.
(c) Write an integral for the volume of the solid formed by rotating the region $R$ about the line $y=-1$. DO NOT evaluate the integral.
(d) Now consider the solid whose base is the region $R$ and whose cross-sections above the xy-plane and perpendicular to the y-axis (i.e. slices parallel to the x-axis) are squares. Write an integral for the volume of this solid, but DO NOT evaluate the integral.

