MATH 142 Midterm Exam \#1

October 10, 2008
 NAME:

\qquad

- No calculators are allowed on this exam.
- Answers such as $\frac{23 \cdot 5}{30}-\frac{2^{5}}{3 \cdot 34}$ are perfectly fine!! However you MUST simplify expressions such as $\sin (\pi / 3)$.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please include all information about u-substitutions, and use correct mathematical grammar in the presentation of your solution.

Problem	Points	Score
1	20	
2	30	
3	15	
4	15	
5	20	
total	100	

$$
\sum_{i=1}^{n} a=a \cdot n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

1. Definition of the Integral. Recall the definition of the definite integral for a continuous function $\overline{f(x) \text { on the interval }[a, b]}$ using right hand endpoints in the Riemann sum.

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Calculate the integral below using the definition of the integral and right hand endpoints in the Riemann sum.

$$
\int_{1}^{3} 5-x d x
$$

(a) First, find the following quantities:
\qquad

$$
x_{i}=
$$

\qquad

$$
f\left(x_{i}\right)=
$$

\qquad
(b) Next, using the quantities above and the summation formulas on the front page of the exam, simplify $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ into an expression without the summation notation.
(c) Last, evaluate the limit, $\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x\right)$.

Note: you can check your answer by using the Fundamental Theorem of Calculus.
2. Integrals. Evaluate the following definite and indefinite integrals.
(a) $\int\left(t^{2}-\frac{7}{\sqrt{t}}+45 t\right) t^{-2} d t$
(b) $\int_{\sqrt{\frac{\pi}{12}}}^{\sqrt{\frac{\pi}{2}}} x \sin \left(3 x^{2}\right) d x$
3. Let $f(x)=\int_{0}^{x} \frac{5-t}{t^{4}+7} d t$. Determine if the following statements are TRUE or FALSE. Justify your answers; unsupported answers will receive no credit.
(a) $f(0)=\frac{5}{7}$
(b) $f(5)<0$
(c) f has a local maximum at $x=5$
4. A gas station stores its fuel in a underground tank. The shape of the tank is pictured below. The height of the tank is 5 meters, length is 10 meters, and the top of the tank is located 8 meters below ground. Using that the density of the fuel is $673 \mathrm{~kg} / \mathrm{m}^{3}$ and the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, set up but DO NOT EVALUATE an integral that calculates the work required to empty the tank full of fuel.

5. Volume. Note: On this problem, you can earn partial credit for parts (b)-(d) by sketching an arbitrary slice of the volume in the space provided in the left margin.

Consider the region, R which is bounded between the curves

$$
y=2 x+3 \quad y=x^{2}
$$

(a) Sketch the region and label the points of intersection.

(b) Write an integral for the volume of the solid formed by rotating the region R about the x -axis. DO NOT evaluate the integral.
(c) Write an integral for the volume of the solid formed by rotating the region R about the line $x=-3$. DO NOT evaluate the integral.
(d) Now consider the solid whose base is the region R and whose cross-sections above the xy-plane and perpendicular to the x -axis (i.e. slices parallel to the y -axis) are squares. Write an integral for the volume of this solid, but DO NOT evaluate the integral.

