Group Exam 4

Math 142
Professor Johnson

Name of group member:
Name of group member:

Problem 1: (a) Find the 4th degree Taylor polynomial for $f(x)=\sqrt{x}$ centered at $a=9$. You needn't simplify your answer by multiplying out the fractions.
(b) Use the 4th degree Taylor polynomial to approximate $\sqrt{9.3}$ and describe the error. You may assume that the Taylor Series for $f(x)$ centered at $a=9$ is equal to \sqrt{x} for all x-values in an interval that contains $x=9.3$.
\qquad

Group Exam 4

Math 142
Professor Johnson

Name of group member:
Name of group member:

Problem 2: (a) Find the power series representation of $g(x)=\ln (1+x)$ centered at $a=0$. Show all work.
(b) Determine the interval of convergence of the power series representation of $g(x)$ found above.
(c) Find the sum of the series. Hint: Use parts (a) and (b).
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(0.8)^{n}}{n}=$
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=$
\qquad

Group Exam 4

Math 142
Professor Johnson

Name:

Name of group member:
Name of group member:

Problem 3: (a) Find the Maclaurin series for $g(x)=x^{2} e^{\left(x^{10}\right)}$. By following the steps below.
(i) First find the Maclaurin series for e^{x} and determine its interval of convergence.
(ii) Plug x^{10} into the series representation for e^{x} found above to find a power series representation for $e^{x^{10}}$.
(iii) Multiply and distribute x^{2} times the series representation for $e^{x^{10}}$ found above.
(b) Use the Maclaurin series for $g(x)=x^{2} e^{\left(x^{10}\right)}$ to evaluate the integral $\int_{-0.3}^{0} x^{2} e^{\left(x^{10}\right)} d x$. Your answer will be a series.
(c) Give an example of another integral that cannot be evaluated using any of the previously studied techniques, but CAN be evaluated using the power series technique above.
\qquad

