Group Exam 4	Name:
Math 142	Name of group member:
Professor Johnson	Name of group member:

Problem 1: (a) Find the 4th degree Taylor polynomial for $f(x) = \sqrt{x}$ centered at a = 9. You needn't simplify your answer by multiplying out the fractions.

(b) Use the 4th degree Taylor polynomial to approximate $\sqrt{9.3}$ and describe the error. You may assume that the Taylor Series for f(x) centered at a = 9 is equal to \sqrt{x} for all x-values in an interval that contains x = 9.3.

Group Exam 4	Name:
Math 142	Name of group member:
Professor Johnson	Name of group member:

Problem 2: (a) Find the power series representation of $g(x) = \ln(1+x)$ centered at a = 0. Show all work.

(b) Determine the interval of convergence of the power series representation of g(x) found above.

(c) Find the sum of the series. Hint: Use parts (a) and (b).

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (0.8)^n}{n} =$$
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} =$$

Group Exam 4	Name:	
Math 142	Name of group member:	
Professor Johnson	Name of group member:	

Problem 3: (a) Find the Maclaurin series for $g(x) = x^2 e^{(x^{10})}$. By following the steps below.

(i) First find the Maclaurin series for e^x and determine its interval of convergence.

(ii) Plug x^{10} into the series representation for e^x found above to find a power series representation for $e^{x^{10}}$.

(iii) Multiply and distribute x^2 times the series representation for $e^{x^{10}}$ found above.

(b) Use the Maclaurin series for $g(x) = x^2 e^{(x^{10})}$ to evaluate the integral $\int_{-0.3}^{0} x^2 e^{(x^{10})} dx$. Your answer will be a series.

(c) Give an example of another integral that cannot be evaluated using any of the previously studied techniques, but CAN be evaluated using the power series technique above.