Worksheet, aka Group Exam 5

Math 142

1. Parametric Equations. Give a careful sketch of the parametric curves given below in the space provided. Label the point on each curve where $t=0$ and put arrows on the curve indicating the direction of travel along the curve as t increases.
$\left\{\begin{array}{l}x=-\cos (t) \\ y=\sin (t)\end{array}\right.$
$\left\{\begin{array}{l}x=3 \cos (t) \\ y=\sin (t)\end{array}\right.$
$\begin{cases}x & = \\ y & =t \\ y & 1+t\end{cases}$
$\left\{\begin{array}{l}x=e^{t} \\ y=1-e^{t}\end{array}\right.$
2. Find the area inside the ellipse whose graph is given by the parametric equation $\left\{\begin{array}{l}x=\cos (5 t) \\ y=\end{array}\right.$

3. Polar Coordinates and Polar Equations

A:

B:

C:

D:

E:

F:

G:

H:

I:

Write the letter of the graph that best fits the graph of the given polar curve in the blank space provided. If not specified, the domain is all real θ-values.
(i) $r=-\cos (\theta)$ \qquad
(ii) $r=\sin (4 \theta)$ \qquad
(iii) $r=1-\cos (\theta)$ \qquad (iv) $r=\cos (3 \theta)$ \qquad
4. The graph of the polar curve $r=\sin (\theta)+\cos (\theta)$ is given below.

a) Find two different descriptions of the point \mathbf{P} in polar coordinates that satisfy the polar curve $r=\sin (\theta)+\cos (\theta)$.
b) Calculate the area inside the polar curve $r=\sin (\theta)+\cos (\theta)$. [Note: part a) should help you figure out the limits of integration.]

