Math Symbols

\wedge Conjunction	\vee Disjunction	\sim Negation
\rightarrow Conditional	\leftrightarrow Biconditional	
\Rightarrow Implication	\Leftrightarrow Equivalence	
\forall For all	\exists There exists	\in in
\therefore Therefore	\square QED	

Rules of Valid Argumentation Involving Implication Let P, Q, R, and S be statements,

i	$(P \rightarrow Q) \wedge P \Rightarrow Q$	Modus Ponens (Mode that affirms), used in Direct Proof
ii	$(P \rightarrow Q) \wedge \sim Q \Rightarrow \sim P$	Modus Tollens (Mode that denies), used in Proof by Contrapositive
iii	$(P \wedge Q) \Rightarrow P$	Specialization
iv	$(P \wedge Q) \Rightarrow Q$	Specialization
v	$P \Rightarrow P \vee Q$	Addition
vii	$(P \vee Q) \wedge \sim P \Rightarrow Q$	Modus Tollendo Ponens (also called Disjunctive Syllogism. Mode which, by taking away, affirms)
ix	$P \leftrightarrow Q \Rightarrow P \rightarrow Q$	Biconditional-Conditional
x	$P \leftrightarrow Q \Rightarrow Q \rightarrow P$	Biconditional-Conditional
xi	$(P \rightarrow Q) \wedge(Q \rightarrow P) \Rightarrow P \leftrightarrow Q$	Conditional-Biconditional
xii	$(P \rightarrow Q) \wedge(Q \rightarrow R) \Rightarrow P \rightarrow R$	Hypothetical Syllogism
xiii	$(P \rightarrow Q) \wedge(R \rightarrow S) \wedge(P \vee R) \Rightarrow(Q \vee S)$	Constructive Dilema

Rules of Valid Argumentation Involving Equivalence
Let P, Q, and R be statements,

i	$\sim(\sim P) \Leftrightarrow P$	Double negation, used in Proof by Contradiction
ii	$P \vee Q \Leftrightarrow Q \vee P$	Commutative Law
iii	$P \wedge Q \Leftrightarrow Q \wedge P$	Commutative Law
iv	$(P \vee Q) \vee R \Leftrightarrow P \vee(Q \vee R)$	Associative Law
v	$(P \wedge Q) \wedge R \Leftrightarrow P \wedge(Q \wedge R)$	Associative Law
vi	$P \wedge(Q \vee R) \Leftrightarrow(P \wedge Q) \vee(P \wedge R)$	Distributive Law
vii	$P \vee(Q \wedge R) \Leftrightarrow(P \vee Q) \wedge(P \vee R)$	Distributive Law
viii	$P \rightarrow Q \Leftrightarrow \sim P \vee Q$	
ix	$P \rightarrow Q \Leftrightarrow \sim Q \rightarrow \sim P$	Contrapositive, used in proofs by Contrapositive
x	$P \leftrightarrow Q \Leftrightarrow Q \leftrightarrow P$	
xi	$P \leftrightarrow Q \Leftrightarrow(P \rightarrow Q) \wedge(Q \rightarrow P)$	
xii	$\sim(P \wedge Q) \Leftrightarrow \sim P \vee \sim Q$	De Morgan's Law
xiii	$\sim(P \vee Q) \Leftrightarrow \sim P \wedge \sim Q$	De Morgan's Law
xiv	$\sim(P \rightarrow Q) \Leftrightarrow P \wedge \sim Q$	
xv	$\sim(P \leftrightarrow Q \Leftrightarrow Q) \Leftrightarrow(P \wedge \sim Q) \vee(\sim P \wedge Q)$	

Rules of Valid Argumentation Involving Quantifiers
Let $P(x)$ be a predicate,

$[(\forall x \in U) P(x)] \Rightarrow P(a)$ where a is arbitrary,	Universal Instantiation
we can chose it to be whatever we want	
$[(\exists x \in U) P(x)] \Rightarrow P(b)$ where b is some particular element of U,	Existential Instantiation
b can not have appeared before	
$P(c)$ where c is an arbitrary element of $U \Rightarrow[(\forall x \in U) P(x)]$	Universal Generalization
$P(d)$ where d is some particular element of $U \Rightarrow[(\exists x \in U) P(x)]$	Existential Generalization

Thanks to Professor McNicholas for this handy one page summary of the Laws of Inference and Equivalence.

