
Math 256: Lab #2 (modified Lab 2.3 from textbook) Due: Wednesday, October 25.

Autonomous second-order differential equations are studied numerically by reducing them to first-
order systems with two dependent variables. In this lab you will use the computer and analytic
techniques to analyze three somewhat related second-order equations. In particular, you will ana-
lyze phase planes and y(t)- and v(t)-graphs to describe the long-term behavior of the solutions.

In sections 2.1 and 2.3, we discuss the most classic of all second-order equations, the harmonic
oscillator. The harmonic oscillator is

m
d2y

dt2
+ b

dy

dt
+ ky = 0.

It is an example of a second-order, homogeneous, linear equation with constant coefficients. In the
text we explain how this equation is used to model the motion of a spring. The force is assumed to
obey Hooke’s Law (the force is proportional to the amount the spring is compressed or stretched).
The force due to damping is assumed to be proportional to the velocity. In your lab report you
should describe the motion of the spring assuming the values of m, b, and k in the charts below.

Your report should discuss the following:

1. Undamped Harmonic oscillator. The first equation we will study is the harmonic oscillator with
no damping (b=0). For each choice of the m and k values in the chart below find (i), (ii), and (iii)
and answer the follow up questions 1a), 1b) and 1c).

mass, m spring constant, k
Choice 1 20 5
Choice 2 5 20

(i) Write the system of differential equations which correspond to the harmonic oscillator with
coefficients m and k.

(ii) Find the general solution to the undamped harmonic oscillator equation, i.e. find y(t) and v(t).
Solve the two initial value problems for (y0, v0) = (2, 0) and (y0, v0) = (0,−4).

(iii) Examine the solutions using both the phase plane and graphs of the solutions as a function of
time. Sketch or include a printout of the phase space, and draw the graphs of y(t) and v(t) for the
initial value problems (y0, v0) = (2, 0) and (y0, v0) = (0,−4).

Answer the following questions:

1a) Are the solutions periodic? If so, what does the period appear to be? Include and label any
periodic behavior in your graphs of y(t) and v(t) for the two different sets of initial conditions.

1b) For each of the two sets of initial conditions, what are the physical interpretations of your
initial conditions? How are these initial conditions reflected in your graphs in the phase plane and
the y(t)- & v(t)-graphs?
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1c) What can you say globally about the behavior of the undamped harmonic oscillator over time?
Make a conjecture about the behavior of solutions for other values of m and k. Compare and
contrast the solutions for harmonic oscillator using the variable in Choice 1 versus Choice 2. How
do the phase planes differ? Are there values of m and k for which the solutions spiral counter-
clockwise about the origin?

2. Harmonic Oscillator with damping For each choice of the m, k, and b values in the chart below
repeat 1.(i)-(iii)

mass, m spring constant, k damping constant, b
Choice 1 20 5 2
Choice 2 5 20 2
Choice 3 20 5 20
Choice 4 5 20 20

Answer the following questions:

2a) Of the four choices above, which choices of m, k, and b have periodic solutions? Which have
straight line solutions?

2b) What general conditions on m, k and b guarantee the system has straight line solutions? (prove
your assertion)

2c) What general condition on m, k, and b guarantee the system has spiral solutions? (prove your
assertion) What general conditions on m, k and b guarantee the origin is a spiral source? (prove
your assertion) What general conditions on m, k, and b guarantee the origin is a spiral sink? (prove
your assertion) If the eigenvalues are complex, is there a condition on b and k that gives solutions
which spiral counter-clockwise around the origin? (explain)

2d) Are there any values of m, k, and b for which the origin is a source or saddle equilibrium? If
so, what is the condition on m, k, and b. If not, explain why not.

3. Harmonic oscillator with nonlinear damping For this question we will use numerical and quali-
tative techniques to analyze phase planes and determine the long-term behavior of the solutions to
the differential equation

m
d2y

dt2
+ b

∣∣∣∣dy

dt

∣∣∣∣ dy

dt
+ ky = 0,

using the m, k, and b values in the chart below.

mass, m spring constant, k damping constant, b
Choice 1 20 5 2
Choice 2 5 20 2
Choice 3 20 5 20
Choice 4 5 20 20
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Note that even with the same value of the parameter b the damping force in this equation and
the equation in problem 2 have the same magnitude only for velocity ±1. Also, notice that the
sign of the term

∣∣∣dy
dt

∣∣∣ dy
dt is the same as dy

dt , hence the damping force is always directed opposite
the direction of motion. The difference between this equation and the classical harmonic oscillator
with damping is the size of the damping for large and small velocities. One of the many examples
for which this is a better model than linear damping is the drag on an airplane tires from wet snow
or slush. Drag from only four inches of slush was enough to cause the 1958 crash during take-off of
plane carrying the Manchester United soccer team. Currently, large airplanes are allowed to take
off and land in no more than a 1/2 inch of slush.*

(i)’ Examine solutions and their graphs in the phase plane using Euler’s method for systems. Are
the solutions periodic? If so, what does the period seem to be? Although we have not yet discussed
the Runge Kutta Method for systems, use this option in the HPGSystemSolver and compare your
findings to those using Euler’s Method.

(ii)’ Describe (in words and in a graph) the solutions to three different initial value problems
(y0, v0) = (1, 3), (y0, v0) = (3,−2), and (y0, v0) = (−0.1,−0.1). How to different values of m,
k, and b impact the long-term behavior of the solution? What is the long-term behavior of the
system? Is the long-term behavior of the solutions different for different initial conditions? If so,
give a description of the corresponding initial conditions.

4. Nonlinear second-order equation Finally, consider a somewhat related second-order equation
where the damping coefficient b is replaced by the factor (y2 − α); that is,

m
d2y

dt2
+ (y2 − α)

dy

dt
+ ky = 0.

Is it reasonable to interpret this factor as some type of damping? Provide a complete description
of the long-term behavior of the solutions for the values of m, k, and α in the chart below. Are the
solutions periodic? If so, what does the period seem to be? Explain why this model is not a good
model for the mass-spring system. Give an example for some other type of physical or biological
phenomenon that could be modeled by this equation.

mass, m spring constant, k α

Choice 1 20 5 2
Choice 2 5 20 3
Choice 3 5 40 10

*See Stanley Stewart, Air Disasters, Barnes & Noble, 1986.
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