If *A* is diagonalizable, the equation $A = PDP^{-1}$ can be thought of as a factorization of the matrix *A*. If *A* isn't diagonalizable, we can use the **singular value decomposition (SVD)** instead.

Theorem (Singular Value Decomposition)

If A is an $m \times n$ matrix of rank k, then there exist matrices U, Σ , and V^T such that $A = U\Sigma V^T$ and

- $A^T A = V D V^{-1}$ for some diagonal matrix D.
- Σ is a diagonal matrix. The first k diagonal entries of Σ are the square roots of the nonzero eigenvalues of A^T A (the singular values of A), in decreasing order, and the rest are 0.
- 3 If \vec{u}_i is the *i*th column of U, \vec{v}_i is the *i*th row of V^T, and σ_i is the *i*th diagonal entry of Σ , then $\vec{u}_i = (1/\sigma_i)A\vec{v}_i$.
- The first k columns of U form an orthonormal basis of col(A), and the first k columns of V form an orthonormal basis of row(A).
- Solution The columns of U form an orthonormal basis of ℝ^m, and the columns of V form an orthonormal basis of ℝⁿ.

Singular value decomposition (SVD)

$$A = U \Sigma V^T$$

Reduced SVD

If rank(A) = r, then we can take the first *r* columns of *U* and Σ and the first *r* rows of *V* in the SVD and it still works!

$$A = U_r \Sigma_r V_r^T$$

Rank k approximation of A

Taking fewer rows and columns of U, Σ , and V gives a good approximation of A with smaller rank.

$$A_k = U_k \Sigma_k V_k^T$$
 with $k < r$

This is how the SVD is used for image compression.