If A is diagonalizable, the equation $A=P D P^{-1}$ can be thought of as a factorization of the matrix A. If A isn't diagonalizable, we can use the singular value decomposition (SVD) instead.

Theorem (Singular Value Decomposition)

If A is an $m \times n$ matrix of rank k, then there exist matrices U, Σ, and V^{\top} such that $A=U \Sigma V^{T}$ and
(1) $A^{T} A=V D V^{-1}$ for some diagonal matrix D.
(2) Σ is a diagonal matrix. The first k diagonal entries of Σ are the square roots of the nonzero eigenvalues of $A^{T} A$ (the singular values of A), in decreasing order, and the rest are 0.
(3) If \vec{u}_{i} is the ith column of U, \vec{v}_{i} is the ith row of V^{\top}, and σ_{i} is the ith diagonal entry of Σ, then $\vec{u}_{i}=\left(1 / \sigma_{i}\right) A \vec{v}_{i}$.
(4) The first k columns of U form an orthonormal basis of $\operatorname{col}(A)$, and the first k columns of V form an orthonormal basis of row (A).
(5) The columns of U form an orthonormal basis of \mathbb{R}^{m}, and the columns of V form an orthonormal basis of \mathbb{R}^{n}.

Singular value decomposition (SVD)

$$
A=U \Sigma V^{T}
$$

Reduced SVD

If $\operatorname{rank}(A)=r$, then we can take the first r columns of U and Σ and the first r rows of V in the SVD and it still works!

$$
A=U_{r} \Sigma_{r} V_{r}^{T}
$$

Rank k approximation of A

Taking fewer rows and columns of U, Σ, and V gives a good approximation of A with smaller rank.

$$
A_{k}=U_{k} \Sigma_{k} V_{k}^{T} \text { with } k<r
$$

This is how the SVD is used for image compression.

