Basis and Dimension

Suppose *V* is a subspace of \mathbb{R}^n , and *V* has more than the zero vector. A **basis** of *V* is a set of vectors that are both linearly independent and span *V*.

Find a basis for these subspaces:	
1 The line $y = 3x$ in \mathbb{R}^2 .	3 The plane $z = 3x + 4y$ in \mathbb{R}^3 .
2 The plane $y = 3x$ in \mathbb{R}^3 .	$\textcircled{3} \mathbb{R}^3.$

Basis and Dimension

Suppose *V* is a subspace of \mathbb{R}^n , and *V* has more than the zero vector. A **basis** of *V* is a set of vectors that are both linearly independent and span *V*.

Find a basis for these subspaces:	
1 The line $y = 3x$ in \mathbb{R}^2 .	3 The plane $z = 3x + 4y$ in \mathbb{R}^3 .
2 The plane $y = 3x$ in \mathbb{R}^3 .	

Theorems about bases

- A set of vectors $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is a basis for *V* if and only if every vector in *V* can be written as a linear combination of the vectors $\{\vec{v}_1, \ldots, \vec{v}_k\}$ in exactly one way.
- Every subspace V with more than the zero vector has a basis.
- Every basis of V has the same number of vectors.

The *dimension* of V, dim(V), is the number of vectors in a basis of V.

Suppose *V* is a subspace of \mathbb{R}^n and $S = \{\vec{v_1}, \dots, \vec{v_k}\}$ is a set of *k* vectors in *V*.

- If *S* is linearly independent then *S* is a subset of a basis of *V*.
- If S spans V then a subset of S is a basis of V.
- If S is linearly independent then $k \leq \dim(V)$.
- If S spans V then dim $(V) \leq k$.
- If $\dim(V) < k$ then S is linearly dependent.
- If $k < \dim(V)$ then S doesn't span V.
- If S is linearly independent and $k = \dim(V)$ then S is a basis of V.
- If S spans V and $k = \dim(V)$ then S is a basis of V.
- If V is contained in another subspace W then $\dim(V) \leq \dim(W)$.
- If V is contained in another subspace W and $\dim(V) = \dim(W)$ then V = W.