Basis and Dimension

Suppose V is a subspace of \mathbb{R}^{n}, and V has more than the zero vector. A basis of V is a set of vectors that are both linearly independent and span V.

Find a basis for these subspaces:
(1) The line $y=3 x$ in \mathbb{R}^{2}.
(2) The plane $y=3 x$ in \mathbb{R}^{3}.
(3) The plane $z=3 x+4 y$ in \mathbb{R}^{3}.
(9) \mathbb{R}^{3}.

Basis and Dimension

Suppose V is a subspace of \mathbb{R}^{n}, and V has more than the zero vector. A basis of V is a set of vectors that are both linearly independent and span V.

Find a basis for these subspaces:
(1) The line $y=3 x$ in \mathbb{R}^{2}.
(2) The plane $y=3 x$ in \mathbb{R}^{3}.
(3) The plane $z=3 x+4 y$ in \mathbb{R}^{3}.
(9) \mathbb{R}^{3}.

Theorems about bases

(1) A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a basis for V if and only if every vector in V can be written as a linear combination of the vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in exactly one way.
(2) Every subspace V with more than the zero vector has a basis.
(3) Every basis of V has the same number of vectors.

The dimension of $V, \operatorname{dim}(V)$, is the number of vectors in a basis of V.

Properties of basis and dimension

Suppose V is a subspace of \mathbb{R}^{n} and $S=\left\{\overrightarrow{v_{1}}, \ldots, \vec{v}_{k}\right\}$ is a set of k vectors in V.
(1) If S is linearly independent then S is a subset of a basis of V.
(2) If S spans V then a subset of S is a basis of V.
(3) If S is linearly independent then $k \leq \operatorname{dim}(V)$.
(9) If S spans V then $\operatorname{dim}(V) \leq k$.
(0) If $\operatorname{dim}(V)<k$ then S is linearly dependent.
(0) If $k<\operatorname{dim}(V)$ then S doesn't span V.
(3) If S is linearly independent and $k=\operatorname{dim}(V)$ then S is a basis of V.
(3) If S spans V and $k=\operatorname{dim}(V)$ then S is a basis of V.
(0. If V is contained in another subspace W then $\operatorname{dim}(V) \leq \operatorname{dim}(W)$.
(1) If V is contained in another subspace W and $\operatorname{dim}(V)=\operatorname{dim}(W)$ then $V=W$.

