Orthogonal complements

If *S* is a set of vectors in \mathbb{R}^n , the *orthogonal complement* of *S*, denoted S^{\perp} (S *perp*) is the set of vectors orthogonal to all vectors in *S*.

What are the orthogonal complements of these sets?• $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$ in \mathbb{R}^2 • The line y = 2x in \mathbb{R}^2 • The plane z = 2x + 3y in \mathbb{R}^3

If *S* is a set of vectors in \mathbb{R}^n , the *orthogonal complement* of *S*, denoted S^{\perp} (S *perp*) is the set of vectors orthogonal to all vectors in *S*.

What are the orthogonal complements of these sets?

$\bigcirc \left\{ \left[\begin{array}{c} 1\\2 \end{array} \right] \right\} \text{ in } \mathbb{R}^2$	2 The line $y = 2x$ in \mathbb{R}^2
	3 The plane $z = 2x + 3y$ in \mathbb{R}^3

The **row space** row(A) of a matrix A is the span of the rows of A.

Properties of orthogonal complements:

Suppose *S* is a nonempty subset of \mathbb{R}^n , *V* is a subspace of \mathbb{R}^n , and *A* is an $m \times n$ matrix.

- S^{\perp} is a subspace of \mathbb{R}^n .
- ② $V \cap V^{\perp} = \vec{0}$. (*V* and V^{\perp} have only $\vec{0}$ in common)
- $S^{\perp} = (\operatorname{span}(S))^{\perp}.$

 $(V^{\perp})^{\perp} = V.$

•
$$\operatorname{null}(A) = (\operatorname{row}(A))^{\perp}$$

•
$$\operatorname{null}(A^T) = (\operatorname{col}(A))^{\perp}$$

Theorem (The Rank Theorem)

 $\infty \infty \infty$

$$rank(A) = dim(col(A)) = dim(row(A)).$$

 $\heartsuit \heartsuit \oslash$

Note col(A) is a subspace of \mathbb{R}^n and row(A) is a subspace of \mathbb{R}^m .

The *nullity* of *A* is the dimension of null(A).

Theorem (Rank-Nullity Theorem AKA Dimension Theorem for
Matrices) $\Diamond \Diamond \Diamond$ If A is an $m \times n$ matrix, rank(A) + nullity(A) = n. $\Diamond \Diamond \Diamond$

Theorem (Dimension Theorem for Subspaces)

If V is a subspace of \mathbb{R}^n , dim(V) + dim $(V^{\perp}) = n$.

