Coordinates with respect to a basis

Given a vector \vec{w} in \mathbb{R}^{n} and a basis $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ of \mathbb{R}^{n}, the coordinates of \vec{w} with respect to B (or the B-coordinates of \vec{w}) are
$[\vec{w}]_{B}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$ where $\vec{w}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}$.
Five increasingly tricky problems:
(1) Given \vec{w} in B-coordinates, find \vec{w} in standard coordinates.
(2) Given \vec{w} in standard coordinates, find \vec{w} in B-coordinates.
(3) Given \vec{w} in B_{1}-coordinates, find \vec{w} in B_{2}-coordinates.
(4) Given a linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find the matrix for T which inputs and outputs in B-coordinates.
(5) Given the matrix for T in B_{1}-coordinates, find the matrix for T in B_{2}-coordinates.

Solutions

(1) Given \vec{w} in B-coordinates, find \vec{w} in standard coordinates. Plug into $\vec{w}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}$ and simplify.

Solutions

(1) Given \vec{w} in B-coordinates, find \vec{w} in standard coordinates. Plug into $\vec{w}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}$ and simplify.
(2) Given \vec{w} in standard coordinates, find \vec{w} in B-coordinates. Solve $\vec{w}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}$ for a_{1}, \ldots, a_{n}.

Solutions

(1) Given \vec{w} in B-coordinates, find \vec{w} in standard coordinates.

Plug into $\vec{w}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}$ and simplify.
(2) Given \vec{w} in standard coordinates, find \vec{w} in B-coordinates. Solve $\vec{w}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}$ for a_{1}, \ldots, a_{n}.
(3) Given \vec{w} in B_{1}-coordinates, find \vec{w} in B_{2}-coordinates. Find B_{2}-coordinates for the vectors in B_{1}, and plug into $\vec{w}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}$.
The general formula is $[\vec{w}]_{B_{2}}=\left[\left[\vec{v}_{1}\right]_{B_{2}}\left[\vec{v}_{2}\right]_{B_{2}} \cdots\left[\vec{v}_{n}\right]_{B_{2}}\right][\vec{w}]_{B_{1}}$. The matrix $\left[\left[\vec{v}_{1}\right]_{B_{2}}\left[\vec{v}_{2}\right]_{B_{2}} \cdots\left[\vec{v}_{n}\right]_{B_{2}}\right]$ is the transition matrix or change of coordinates matrix $P_{B_{1} \rightarrow B_{2}}$ from B_{1} to B_{2}.

We can find $P_{B_{1} \rightarrow B_{2}}$ by reducing $\left[B_{2} \mid B_{1}\right]$ to obtain $\left[I_{n} \mid P_{B_{1} \rightarrow B_{2}}\right]$.

Theorem

$T(\vec{x})=[\vec{x}]_{B}$ is an invertible linear operator, and $\left(P_{B_{1} \rightarrow B_{2}}\right)^{-1}=P_{B_{2} \rightarrow B_{1}}$.
(9) Given a linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find the matrix for T which inputs and outputs in B-coordinates.
In other words, find the matrix $[T]_{B}$ which inputs $[\vec{x}]_{B}$ and outputs $[T(\vec{x})]_{B}$.

$$
[T]_{B}=\left[\left[T\left(\vec{v}_{1}\right)\right]_{B}\left[T\left(\vec{v}_{2}\right)\right]_{B} \cdots\left[T\left(\vec{v}_{n}\right)\right]_{B}\right]
$$

(1) Given a linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find the matrix for T which inputs and outputs in B-coordinates.
In other words, find the matrix $[T]_{B}$ which inputs $[\vec{x}]_{B}$ and outputs $[T(\vec{x})]_{B}$.

$$
[T]_{B}=\left[\left[T\left(\vec{v}_{1}\right)\right]_{B}\left[T\left(\vec{v}_{2}\right)\right]_{B} \cdots\left[T\left(\vec{v}_{n}\right)\right]_{B}\right]
$$

(0) Given the matrix for T in B_{1}-coordinates, find the matrix for T in B_{2}-coordinates.
In other words, given $[T]_{B_{1}}$ find $[T]_{B_{2}}$, the matrix that inputs $[\vec{x}]_{B_{2}}$ and outputs $[T(\vec{x})]_{B_{2}}$.
We know $P_{B_{1} \rightarrow B_{2}}[\vec{x}]_{B_{1}}=[\vec{x}]_{B_{2}}$.
So we convert $[\vec{x}]_{B_{2}}$ to $[\vec{x}]_{B_{1}}$, then to $[T(\vec{x})]_{B_{1}}$, then to $[T(\vec{x})]_{B_{2}}$:

$$
\begin{array}{r}
{[T]_{B_{2}}=P_{B_{1} \rightarrow B_{2}}[T]_{B_{1}} P_{B_{2} \rightarrow B_{1}}} \\
{[T]_{B_{2}}=P_{B_{1} \rightarrow B_{2}}[T]_{B_{1}}\left(P_{B_{1} \rightarrow B_{2}}\right)^{-1}}
\end{array}
$$

