Given a vector \vec{w} in \mathbb{R}^n and a basis $B = {\vec{v}_1, \dots, \vec{v}_n}$ of \mathbb{R}^n , the *coordinates* of \vec{w} with respect to *B* (or the *B-coordinates* of \vec{w}) are

$$[\vec{w}]_B = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
 where $\vec{w} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n$.

Five increasingly tricky problems:

- **(1)** Given \vec{w} in *B*-coordinates, find \vec{w} in standard coordinates.
- ② Given \vec{w} in standard coordinates, find \vec{w} in *B*-coordinates.
- **③** Given \vec{w} in B_1 -coordinates, find \vec{w} in B_2 -coordinates.
- Given a linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$, find the matrix for T which inputs and outputs in *B*-coordinates.
- Solution Given the matrix for T in B_1 -coordinates, find the matrix for T in B_2 -coordinates.

Solutions

• Given \vec{w} in *B*-coordinates, find \vec{w} in standard coordinates. Plug into $\vec{w} = a_1 \vec{v}_1 + \cdots + a_n \vec{v}_n$ and simplify.

Solutions

- Given \vec{w} in *B*-coordinates, find \vec{w} in standard coordinates. Plug into $\vec{w} = a_1 \vec{v}_1 + \cdots + a_n \vec{v}_n$ and simplify.
- **2** Given \vec{w} in standard coordinates, find \vec{w} in *B*-coordinates. Solve $\vec{w} = a_1 \vec{v}_1 + \cdots + a_n \vec{v}_n$ for a_1, \ldots, a_n .

Solutions

- Given \vec{w} in *B*-coordinates, find \vec{w} in standard coordinates. Plug into $\vec{w} = a_1 \vec{v}_1 + \cdots + a_n \vec{v}_n$ and simplify.
- **2** Given \vec{w} in standard coordinates, find \vec{w} in *B*-coordinates. Solve $\vec{w} = a_1 \vec{v}_1 + \cdots + a_n \vec{v}_n$ for a_1, \ldots, a_n .
- Siven \vec{w} in B_1 -coordinates, find \vec{w} in B_2 -coordinates. Find B_2 -coordinates for the vectors in B_1 , and plug into $\vec{w} = a_1 \vec{v}_1 + \cdots + a_n \vec{v}_n$.

The general formula is $[\vec{w}]_{B_2} = [[\vec{v}_1]_{B_2}[\vec{v}_2]_{B_2}\cdots[\vec{v}_n]_{B_2}][\vec{w}]_{B_1}$. The matrix $[[\vec{v}_1]_{B_2}[\vec{v}_2]_{B_2}\cdots[\vec{v}_n]_{B_2}]$ is the *transition matrix* or *change of coordinates matrix* $P_{B_1 \rightarrow B_2}$ from B_1 to B_2 .

We can find $P_{B_1 \rightarrow B_2}$ by reducing $[B_2|B_1]$ to obtain $[I_n|P_{B_1 \rightarrow B_2}]$.

Theorem

 $T(\vec{x}) = [\vec{x}]_B$ is an invertible linear operator, and $(P_{B_1 \to B_2})^{-1} = P_{B_2 \to B_1}$.

④ Given a linear operator T : ℝⁿ → ℝⁿ, find the matrix for T which inputs and outputs in B-coordinates. In other words, find the matrix [T]_B which inputs [x]_B and outputs

 $[T(\vec{x})]_B$.

 $[T]_B = [[T(\vec{v}_1)]_B[T(\vec{v}_2)]_B \cdots [T(\vec{v}_n)]_B]$

3 Given a linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$, find the matrix for T which inputs and outputs in *B*-coordinates.

In other words, find the matrix $[T]_B$ which inputs $[\vec{x}]_B$ and outputs $[T(\vec{x})]_B$.

$$[T]_B = [[T(\vec{v}_1)]_B [T(\vec{v}_2)]_B \cdots [T(\vec{v}_n)]_B]$$

Signature Given the matrix for T in B_1 -coordinates, find the matrix for T in B_2 -coordinates.

In other words, given $[T]_{B_1}$ find $[T]_{B_2}$, the matrix that inputs $[\vec{x}]_{B_2}$ and outputs $[T(\vec{x})]_{B_2}$.

We know
$$P_{B_1 \to B_2}[\vec{x}]_{B_1} = [\vec{x}]_{B_2}$$
.

So we convert $[\vec{x}]_{B_2}$ to $[\vec{x}]_{B_1}$, then to $[T(\vec{x})]_{B_1}$, then to $[T(\vec{x})]_{B_2}$:

$$\begin{split} [T]_{B_2} &= P_{B_1 \to B_2} [T]_{B_1} P_{B_2 \to B_1} \\ [T]_{B_2} &= P_{B_1 \to B_2} [T]_{B_1} (P_{B_1 \to B_2})^{-1} \end{split}$$