Determinants

The determinant of an $n \times n$ matrix is a number $\operatorname{det}(A)=|A|$ associated with A. We can calculate $\operatorname{det}(A)$ in several different ways:
(1) (Diagonal arrows:) For a 2×2 or 3×3 matrix, multiply down all diagonals, add the products along the right-slanting diagonals, and subtract the products along the left-slanting diagonals.
(2) (Elementary products:) Multiply all permutation patterns of A (exactly one entry from each row and each column).
Add the even permutations and subtract the odd permutations (even/odd minimum number of swaps to put the entries back in order).
(3) (Cofactor expansion:)
$\operatorname{det}(A)=a_{1 j} C_{1 j}+\cdots+a_{n j} C_{n j}$ (expansion along the j th column) $\operatorname{det}(A)=a_{i 1} C_{i 1}+\cdots+a_{i n} C_{i n}$ (expansion along the ith row) where $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$, where $A_{i j}$ is obtained by deleting the i th row and jth column of A.

What are the determinants of these matrices?

- $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(2) $\left[\begin{array}{lll}1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(3) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

What are the determinants of these matrices?

- $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(2) $\left[\begin{array}{lll}1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(3) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

What are the determinants of these matrices?
(1) $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
(2) $\left[\begin{array}{ccc}3 a & 3 b & 3 c \\ d & e & f \\ g & h & i\end{array}\right]$
(3) $\left[\begin{array}{ccc}a & b & c \\ d+5 a & e+5 b & f+5 c \\ g & h & i\end{array}\right]$
(4) $\left[\begin{array}{lll}d & e & f \\ a & b & c \\ g & h & i\end{array}\right]$

What are the determinants of these matrices?

(3) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

What are the determinants of these matrices?
(1) $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
(2) $\left[\begin{array}{ccc}3 a & 3 b & 3 c \\ d & e & f \\ g & h & i\end{array}\right]$
(3) $\left[\begin{array}{ccc}a & b & c \\ d+5 a & e+5 b & f+5 c \\ g & h & i\end{array}\right]$
(4) $\left[\begin{array}{lll}d & e & f \\ a & b & c \\ g & h & i\end{array}\right]$

Lemma. $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$, where E is an elementary matrix.
Theorem. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for any matrices A and B.

Properties of Determinants

(1) If A is an upper or lower triangular matrix (or a diagonal matrix) then $\operatorname{det}(A)$ is the product of its diagonal entries.
(2) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
(3) A is invertible if and only if $\operatorname{det}(A) \neq 0$.
(4) If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.
(5) If A has a row or column of zeros, two identical rows or columns, or two proportional rows or columns, then $\operatorname{det}(A)=0$.
(6) For an $n \times n$ matrix A and scalar $k, \operatorname{det}(k A)=k^{n} \operatorname{det}(A)$.
(7) The determinant of a rotation in \mathbb{R}^{2} or \mathbb{R}^{3} is 1 . The determinant of a reflection in \mathbb{R}^{2} or \mathbb{R}^{3} is -1 .
(8) If A is a 2×2 matrix, then $|\operatorname{det}(A)|$ is the area of the parallelogram defined by the columns of A.
(9) If A is a 3×3 matrix, then $|\operatorname{det}(A)|$ is the volume of the parallelepiped defined by the columns of A.

