The *determinant* of an $n \times n$ matrix is a number det(A) = |A| associated with A. We can calculate det(A) in several different ways:

- (Diagonal arrows:) For a 2 × 2 or 3 × 3 matrix, multiply down all diagonals, add the products along the right-slanting diagonals, and subtract the products along the left-slanting diagonals.
- (Elementary products:) Multiply all permutation patterns of A (exactly one entry from each row and each column). Add the even permutations and subtract the odd permutations (even/odd minimum number of swaps to put the entries back in order).

(Cofactor expansion:)

det(A) = $a_{1j}C_{1j} + \cdots + a_{nj}C_{nj}$ (expansion along the *j*th column) det(A) = $a_{i1}C_{i1} + \cdots + a_{in}C_{in}$ (expansion along the *i*th row) where $C_{ij} = (-1)^{i+j} \det(A_{ij})$, where A_{ij} is obtained by deleting the *i*th row and *j*th column of A.

What are the determinants of these matrices?

What are the determinants of these matrices?

Lemma. det(EA) = det(E) det(A), where *E* is an elementary matrix.

Theorem. det(AB) = det(A) det(B) for any matrices A and B.

- If A is an upper or lower triangular matrix (or a diagonal matrix) then det(A) is the product of its diagonal entries.
- $each det (A^T) = det(A).$
- A is invertible if and only if $det(A) \neq 0$.
- If A is invertible, then $det(A^{-1}) = 1/det(A)$.
- So If A has a row or column of zeros, two identical rows or columns, or two proportional rows or columns, then det(A) = 0.
- So For an $n \times n$ matrix A and scalar k, $det(kA) = k^n det(A)$.
- The determinant of a rotation in \mathbb{R}^2 or \mathbb{R}^3 is 1. The determinant of a reflection in \mathbb{R}^2 or \mathbb{R}^3 is -1.
- If A is a 2×2 matrix, then $|\det(A)|$ is the area of the parallelogram defined by the columns of A.
- If A is a 3×3 matrix, then $|\det(A)|$ is the volume of the parallelepiped defined by the columns of A.