Eigenthings

If A is a square matrix, \vec{x} is a non-zero vector, and λ (lambda) is a scalar, and

$$
A \vec{x}=\lambda \vec{x}
$$

then λ is called an eigenvalue of A and \vec{x} is called an eigenvector of A corresponding to λ.

$$
\begin{array}{r}
A \vec{x}=\lambda \vec{x} \\
A \vec{x}=\lambda I_{n} \vec{x} \\
\left(A-\lambda I_{n}\right) \vec{x}=\overrightarrow{0}
\end{array}
$$

Given an eigenvalue λ, the set of eigenvectors with eigenvalue λ is the set of solutions to $\left(A-\lambda I_{n}\right) \vec{x}=\overrightarrow{0}$, which is the null space of the matrix $A-\lambda I_{n}$, so it's a subspace of \mathbb{R}^{n}, called the eigenspace of λ.

Eigenstuff

We know null $\left(A-\lambda I_{n}\right)=\{\overrightarrow{0}\}$ if and only if $A-\lambda I_{n}$ is invertible.
Since we ignore $\overrightarrow{0}$ as an eigenvector, λ is an eigenvalue of A if and only if $A-\lambda I_{n}$ is not invertible, which is true if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.

Thinking of λ as a variable, this is is called the characteristic equation of A, and $\operatorname{det}\left(A-\lambda I_{n}\right)$ is called the characteristic polynomial of A.

Theorem

The number k is an eigenvalue of A if and only if k is a root of the polynomial $\operatorname{det}\left(A-\lambda I_{n}\right)$.

The number of times k is a root of $\operatorname{det}\left(A-\lambda I_{n}\right)$ is called the algebraic multiplicity of k as an eigenvalue of A.

Theorem

A is invertible if and only if 0 is not an eigenvalue of A.

