If *A* is a square matrix, \vec{x} is a non-zero vector, and λ (lambda) is a scalar, and

$$A\vec{x} = \lambda\vec{x}$$

then λ is called an *eigenvalue* of *A* and \vec{x} is called an *eigenvector* of *A* corresponding to λ .

$$A\vec{x} = \lambda \vec{x}$$
$$A\vec{x} = \lambda I_n \vec{x}$$
$$(A - \lambda I_n)\vec{x} = \vec{0}$$

Given an eigenvalue λ , the set of eigenvectors with eigenvalue λ is the set of solutions to $(A - \lambda I_n)\vec{x} = \vec{0}$, which is the null space of the matrix $A - \lambda I_n$, so it's a subspace of \mathbb{R}^n , called the *eigenspace* of λ .

Eigenstuff

We know null $(A - \lambda I_n) = \{\vec{0}\}$ if and only if $A - \lambda I_n$ is invertible. Since we ignore $\vec{0}$ as an eigenvector, λ is an eigenvalue of A if and only if $A - \lambda I_n$ is not invertible, which is true if and only if det $(A - \lambda I_n) = 0$.

Thinking of λ as a variable, this is is called the *characteristic* equation of *A*, and det $(A - \lambda I_n)$ is called the *characteristic* polynomial of *A*.

Theorem

The number k is an eigenvalue of A if and only if k is a root of the polynomial $det(A - \lambda I_n)$.

The number of times k is a root of $det(A - \lambda I_n)$ is called the *algebraic multiplicity* of k as an eigenvalue of A.

Theorem

A is invertible if and only if 0 is not an eigenvalue of A.