
Linear Algebra
Fall 21
Homework Assignments

Each assignment is due by the end of the day. Upload the theoretical and applied assignments
to your folder in Google Drive. Explain your solutions as much as you can. Please work with
and discuss these assignments with your professor and classmates, but your submitted written
work should be your own.

WeBWorK #1 due Friday September 3.

Theoretical homework #1 due Friday September 10:
Explain all your solutions.

• Section 1.1 Exercise D3

• Section 1.2 Exercises D3, D9, D10

• Section 1.3 Exercises 16, D2, D3, D4

• Section 2.1 Exercises D4, D8, D9

WeBWorK #2 due Monday September 13.

Theoretical homework #2 due Friday September 17:
Explain all your solutions.

• Section 2.2 8, D1, D3, D5, D7, P1 (notice there’s a part b)

• Section 3.1 D2, D4, D6, D8, D9cd

Applied homework #1 due Wednesday September 22: Splines!

1. Read Python Numerical Methods section 17.3 to learn about cubic splines.

2. Find a cubic spline through the points (1, 2), (3, 4), (5,−1), and (7, 0). Use the standard
requirement that the second derivative of the functions at the first and last points should
be 0.

3. Write a Python program to find a cubic spline through any four points (a, b), (c, d), (i, j),
and (p, q) in the plane. Again use the requirement that the second derivative of the
functions at the first and last points should be 0. Don’t use the built in CubicSpline

function, generate your equations and use Python to solve the corresponding system of
linear equations.

Output the formulas for the cubic functions, and also output the graph of your cubic
spline together with the four points.

Test your program on the points in part 2 to check that it works, and show your output.

4. Modify your program to make the first derivative, not the second derivative, of the func-
tions at the first and last points 0. Write a sentence about the qualitative difference
between the graphs you got in this part and in part 3.

https://pythonnumericalmethods.berkeley.edu/notebooks/chapter17.03-Cubic-Spline-Interpolation.html


WeBWorK #3 due Friday September 24.

Theoretical homework #3 due Wednesday September 29:
Explain all your solutions.

• Section 3.2 D4, D6, D7, D8

• Section 3.3 D2, D5ce, D7, P4

• Section 3.4 D3, D4

Applied homework #2 due Monday October 4: Markov chains and predictive text!

1. Use Python to complete problem 5.1: T2. Report your calculations from Python and
explain what they mean.

2. Open the Python notebook Markov chain predictive text in the Wise resources folder. Use
your own text file of at least 100 words to generate some lines of predictive text. Share
your favorites, and then explain how the code works.

3. Find the steady-state vector for your transition matrix from part 2, by approximation or
direct calculation.

4. Pick five words from your text that appear frequently. Using your transition matrix from
part 2, draw a state diagram of these five words / similar to the diagrams in Figures 5.1.1
and 5.1.3. You can leave out arrows with probability 0.

5. Extra credit: Modify the code in the Markov chain predictive text notebook to generate
each word based on the previous two words, instead of the previous one word. Again
generate some lines of predictive text and share your favorites, along with your modified
code.

WeBWorK #4 due Wednesday October 6.

WeBWorK #5 due Wednesday October 13.

Midterm due Wednesday October 20.

Applied homework #3 due Wednesday October 27: Error correcting codes!

1. Read https://math.ryerson.ca/ danziger/professor/MTH108/Handouts/codes.pdf to learn
about error correcting codes. In this document, the author uses the notation F2, which
is the numbers 0 and 1 in binary.

2. Complete exercise 3 in the reading.

3. Using the tools in the Python notebook Error correcting codes, implement the (4, 3, 3)
Hamming code described in part 1 in Python. Encode a message of between 10 and 20
characters, and use syndrome decoding to decode it.

4. Any matrix of 0s and 1s with linearly independent columns is the generator matrix of
a linear code. Make your own generator matrix, find the minimum distance d and the
information rate R like you did in part 2, and compare your d and R with the d = 3,
R = 4/7 of the (4, 3, 3) Hamming code given in the reading. (You probably won’t do as
well – it’s hard to find good codes!) Then encode a message with your matrix like you
did in part 3.

https://math.ryerson.ca/~danziger/professor/MTH108/Handouts/codes.pdf


WeBWorK #6 due Monday November 1.

Theoretical homework #4 due Wednesday November 3:
Explain all your solutions.

• Section 6.1 36, D4

• Section 6.2 D6

• Section 6.3 P1

• Section 7.1 6

• Section 7.2 18, P2

• Section 7.3 26, D3

• Section 7.4 22, D10

Applied homework #4 due Monday November 8: Graphics using homogeneous
coordinates and homographies!

1. Complete problems 6.5: 26, 28. Using the Python notebook Image transformations, use
the matrix you found in problem 26 to transform an image in Python. Depending on the
size of your image, you probably want to increase the size of the translation to see the
effect.

2. Take or find an image taken from a slanted angle, and use the tools in the Python notebook
Image transformations to straighten it out so it looks like it’s taken head on. This process
is called perspective rectification. For more examples of this in action, see https://inst.

eecs.berkeley.edu/~cs194-26/fa17/upload/files/proj6A/cs194-26-adp/ or pages
17-22 of
http://people.scs.carleton.ca/~roth/comp4900d-12/notes/homography.pdf.

3. Experiment with different homogeneous transformations AKA homographies using the
Python command transform.warp, and share a couple of your favorites.

WeBWorK #7 due Monday November 15.

Theoretical homework #5 due Wednesday November 17:
Explain all your solutions.

• Section 4.1 D1, D2, D3, D5, P1

• Section 4.2 D4, D9

• Section 4.4 14, P1, P2, P3

WeBWorK #8 due Wednesday December 1.

https://inst.eecs.berkeley.edu/~cs194-26/fa17/upload/files/proj6A/cs194-26-adp/
https://inst.eecs.berkeley.edu/~cs194-26/fa17/upload/files/proj6A/cs194-26-adp/
http://people.scs.carleton.ca/~roth/comp4900d-12/notes/homography.pdf


Applied homework #5 due Friday December 3: Singular value decomposition and
image processing!

1. Complete problems 8.6: 10, 16.

2. Take or find an image, and using the tools in the Python notebook Singular value decom-
position, find the rank k approximation of the matrix of your image for a few different
values of k.

3. Suppose that the amount of memory taken by a matrix is the number of entries of the
matrix. When the computer saves the original image, it saves the whole original matrix
A, but when it saves the SVD it saves the matrices U and V and the list of singular values
along the diagonal of Σ. Compare the size of your original image file, the size of the full
singular value decomposition, and the size of the approximations you found in part 2.
How much space did you save? Find a value of k that’s a good balance between file size
and image quality.

4. The rank k approximation uses the first k columns of the matrix U , the first k rows of
the matrix V , and the first k singular values along the diagonal of the matrix Σ. Try
approximating by taking a different set of rows and columns, for example, skipping the
first 3 columns of U , rows of V , and diagonal values of Σ. How much worse does the
image quality get? This gives you an idea of the relative importance of the few largest
eigenvectors in representing your image.


