Invertible Matrices

Questions

Suppose
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
.
• If $E_1 A = \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix}$, what is E_1 ?
• If $E_2 A = \begin{bmatrix} 3a & 3b & 3c \\ d & e & f \\ g & h & i \end{bmatrix}$, what is E_2 ?
• If $E_3 A = \begin{bmatrix} a & b & c \\ d+3a & e+3b & f+3c \\ g & h & i \end{bmatrix}$, what is E_3 ?

- If *B* is obtained from an $m \times n$ matrix *A* by an elementary row operation, then B = EA, where *E* is the matrix obtained from I_m by the same elementary row operation.
- 2 If *E* is an $n \times n$ elementary matrix, then *E* is invertible, and E^{-1} is the elementary matrix that transforms *E* back into I_n .
- 3 An $n \times n$ matrix A is invertible if and only A is the product of elementary matrices.

Theorem

Suppose A is an $n \times n$ matrix. The following are equivalent.

- A is invertible.
- A is the product of elementary matrices.
- The reduced row echelon form of A is I_n.
- rank(A) = n.
- **(a)** $A\vec{x} = \vec{0}$ has only the solution $\vec{x} = \vec{0}$.
- $A\vec{x} = \vec{b}$ is consistent for all $\vec{b} \in \mathbb{R}^n$.
- $A\vec{x} = \vec{b}$ has exactly one solution for all $\vec{b} \in \mathbb{R}^n$.
- **I** There is an $n \times n$ matrix C such that $CA = I_n$.
- **(9)** There is an $n \times n$ matrix D such that $AD = I_n$.
- A^T is invertible.