Invertible Matrices

Questions

Suppose $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$.
(1) If $E_{1} A=\left[\begin{array}{lll}d & e & f \\ a & b & c \\ g & h & i\end{array}\right]$, what is E_{1} ?
(2) If $E_{2} A=\left[\begin{array}{ccc}3 a & 3 b & 3 c \\ d & e & f \\ g & h & i\end{array}\right]$, what is E_{2} ?
(3) If $E_{3} A=\left[\begin{array}{ccc}a & b & c \\ d+3 a & e+3 b & f+3 c \\ g & h & i\end{array}\right]$, what is E_{3} ?

Properties of Elementary Matrices

(1) If B is obtained from an $m \times n$ matrix A by an elementary row operation, then $B=E A$, where E is the matrix obtained from I_{m} by the same elementary row operation.
(2) If E is an $n \times n$ elementary matrix, then E is invertible, and E^{-1} is the elementary matrix that transforms E back into I_{n}.
(3) An $n \times n$ matrix A is invertible if and only A is the product of elementary matrices.

Amazing Awesome Unifying Invertible Matrix Theorem

Theorem

Suppose A is an $n \times n$ matrix. The following are equivalent.
(1) A is invertible.
(2) A is the product of elementary matrices.
(3) The reduced row echelon form of A is I_{n}.
(4) $\operatorname{rank}(A)=n$.
(5) $A \vec{x}=\overrightarrow{0}$ has only the solution $\vec{x}=\overrightarrow{0}$.
(6) $A \vec{x}=\vec{b}$ is consistent for all $\vec{b} \in \mathbb{R}^{n}$.
(7) $A \vec{x}=\vec{b}$ has exactly one solution for all $\vec{b} \in \mathbb{R}^{n}$.
(8) There is an $n \times n$ matrix C such that $C A=I_{n}$.
(9) There is an $n \times n$ matrix D such that $A D=I_{n}$.
(10) A^{T} is invertible.

