Matrix Algebra

Four different ways of computing the matrix product $A B$:
(1) The entry in the i th row and j th column of $A B$, denoted $(A B)_{i j}$, is the dot product of the i th row of A with the j th column of B.
(2) $A \vec{x}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{n} \vec{a}_{n}$, where the vectors $\vec{a}_{1}, \ldots, \vec{a}_{n}$ are the columns of A.
(3) $A B=\left[A \vec{b}_{1} A \vec{b}_{2} \cdots A \vec{b}_{n}\right]$, where the vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$ are the columns of B.
(4) $A B=\left[\begin{array}{c}\vec{r}_{1} B \\ \vec{r}_{2} B \\ \vdots \\ \vec{r}_{m} B\end{array}\right]$
where the vectors $\vec{r}_{1}, \ldots, \vec{r}_{n}$ are the rows of A.

Some properties of matrix products

(1) To multiply $A B$, we need the number of columns of A equal to the number of rows of B.
(2) Most of the time $A B \neq B A$. (Matrix multiplication is not commutative.)
(3) But $(A B) C=A(B C)$ as long as you keep them in the same order. (Matrix multiplication is associative.)
(4) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \cdot\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$
(5) $A \vec{x}$ works as a matrix product if \vec{x} is a column vector.
(6) Multiplying by a scalar is commutative: $A(c \vec{x})=c(A \vec{x})=(c A) \vec{x}$.
(7) $A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}$ and $A(B+C)=A B+A C$.
(Matrix multiplication is distributive over matrix addition.)

True or False?

(1) If $A B$ and $B A$ are both defined, then A and B are both square matrices.
(2) If B has a column of zeros, then so does $A B$.
(3) If A has a column of zeros, then so does $A B$.
(4) If A has two rows repeated, then so does $A B$.
(5) If A has two columns repeated, then so does $A B$.
(6) If $A B=0$ then $A=0$ or $B=0$.
(7) If $A C=B C$ then $A=B$.

Special matrices and other matrix operations:

- A zero matrix $\left[\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right]$
- An identity matrix $I_{n}=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right]$
- The transpose of A, A^{T} is formed by swapping rows and columns of A, equivalently, reflecting A across its main diagonal, equivalently, $\left(A^{T}\right)_{i j}=(A)_{j i}$.
- The trace of $A, \operatorname{tr}(A)$ is the sum of the entries on the main diagonal of A.
- An $n \times n$ matrix A is invertible or nonsingular if there is a matrix A^{-1} (the inverse of A) such that $A A^{-1}=I_{n}$ and $A^{-1} A=I_{n}$.

Properties of Transposes and Inverses

(1) $(A B)^{T}=B^{T} A^{T}$.
(2) If A is invertible, then A^{T} is invertible, and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(3) If A is an invertible matrix, then A^{-1} is invertible, and $\left(A^{-1}\right)^{-1}=A$.
(9) If A and B are invertible $n \times n$ matrices, then $A B$ is invertible, and

$$
(A B)^{-1}=B^{-1} A^{-1} .
$$

(0) If A is an invertible $n \times n$ matrix and k is a positive integer, then A^{k} is invertible, and

$$
\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}
$$

(0) If A is an invertible matrix, then the equation $A \vec{x}=\vec{b}$ has the unique solution $\vec{x}=A^{-1} \vec{b}$.

