Similar matrices

Two $n \times n$ matrices *A* and *C* are *similar* if there exists an invertible matrix *P* such that $C = PAP^{-1}$.

Note that A is similar to C if and only if C is similar to A.

Theorem

A and C are similar if and only if A and C are matrices for the same linear operator with different bases!

Similar matrices

Two $n \times n$ matrices *A* and *C* are *similar* if there exists an invertible matrix *P* such that $C = PAP^{-1}$.

Note that A is similar to C if and only if C is similar to A.

Theorem

A and C are similar if and only if A and C are matrices for the same linear operator with different bases!

Properties of similar matrices

- Similar matrices have the same determinant.
- Isimilar matrices have the same rank.
- Similar matrices have the same nullity.
- Similar matrices have the same trace.
- Similar matrices have the same characteristic polynomial.
- Similar matrices have the same eigenvalues.

An $n \times n$ matrix is *diagonalizable* if it's similar to a diagonal matrix.

Theorem

Let A be an $n \times n$ matrix. The following are equivalent.

- A is diagonalizable.
- A has n linearly independent eigenvectors.
- **3** \mathbb{R}^n has a basis consisting of eigenvectors of A (an **eigenbasis**).
- The sum of the dimensions of the eigenspaces of A is n.

Theorem

If $\vec{p}_1, \ldots, \vec{p}_n$ are n linearly independent eigenvectors of A and P is the matrix with columns $\vec{p}_1, \ldots, \vec{p}_n$, then $P^{-1}AP$ is diagonal, and the diagonal entries of $P^{-1}AP$ are the corresponding eigenvalues of $\vec{p}_1, \ldots, \vec{p}_n$, in the same order!