Linear independence

- Recall that the vector \vec{w} is a linear combination of the vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ if there exist scalars c_{1}, \ldots, c_{k} such that

$$
\vec{w}=c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k} .
$$

- A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly independent if the only linear combination of the vectors that gives $\overrightarrow{0}$ is $0 \vec{v}_{1}+\ldots+0 \vec{v}_{k}$. More formally, $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly independent if $c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}$ implies $c_{1}=c_{2}=\cdots=0$.

Linear independence

- Recall that the vector \vec{w} is a linear combination of the vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ if there exist scalars c_{1}, \ldots, c_{k} such that

$$
\vec{w}=c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k} .
$$

- A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly independent if the only linear combination of the vectors that gives $\overrightarrow{0}$ is $0 \vec{v}_{1}+\ldots+0 \vec{v}_{k}$. More formally, $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly independent if $c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}$ implies $c_{1}=c_{2}=\cdots=0$.

Which sets of vectors are linearly independent?
(1) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 6\end{array}\right]\right\}$
(4) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 6\end{array}\right],\left[\begin{array}{l}5 \\ 7\end{array}\right]\right\}$
(2) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
(3) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
(5) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]\right\}$

Theorems about linear independence

(1) The columns of a matrix A are linearly independent if and only if $A \vec{x}=\overrightarrow{0}$ has exactly one solution, namely, $\vec{x}=\overrightarrow{0}$.
(2) A set consisting of a single vector is linearly independent if and only if the vector is not the zero vector.
(3) A set of two vectors is linearly independent if and only if the vectors are both not zero, and not multiples of each other.
(9) Any set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if $p>n$.
(0) Any set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ which contains the zero vector is linearly dependent.
(0) If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is linearly independent, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p-1}\right\}$ is also linearly independent.
(1) If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p-1}\right\}$ is linearly dependent, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is also linearly dependent.

Subspaces

A nonempty set W of vectors in \mathbb{R}^{n} is called a subspace of \mathbb{R}^{n} if
(1) If \vec{u} is in W then $c \vec{u}$ is in W for any real number c. (closed under scalar multiplication)
(2) If \vec{u} is in W and \vec{v} is in W then $\vec{u}+\vec{v}$ is in W.
(closed under vector addition)
Equivalently, every linear combination of vectors in W is also in W. (closed under linear combinations)

Subspaces

A nonempty set W of vectors in \mathbb{R}^{n} is called a subspace of \mathbb{R}^{n} if
(1) If \vec{u} is in W then $c \vec{u}$ is in W for any real number c. (closed under scalar multiplication)
(2) If \vec{u} is in W and \vec{v} is in W then $\vec{u}+\vec{v}$ is in W.
(closed under vector addition)
Equivalently, every linear combination of vectors in W is also in W. (closed under linear combinations)

Which sets are subspaces?
(1) The x-axis in \mathbb{R}^{2}.
(2) The line $y=2 x+3$ in \mathbb{R}^{2}.
(3) The first quadrant in \mathbb{R}^{2}.
(4) The solid ball $x^{2}+y^{2}+z^{2} \leq 1$ in \mathbb{R}^{3}.
(5) The plane $x+2 y+3 z=0$ in \mathbb{R}^{3}.

Theorems about subspaces

The set of all linear combinations of the vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ is called the span of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ and is denoted $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.

Theorems about subspaces

(1) A subset of \mathbb{R}^{n} is a subspace if and only if it's the span of some finite set of vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$.
(2) $\{\overrightarrow{0}\}$ is a subspace of \mathbb{R}^{n}.
(3) \mathbb{R}^{n} is a subspace of \mathbb{R}^{n}.
(4) A subspace of \mathbb{R}^{2} is either the origin, a line through the origin, or all of \mathbb{R}^{2}.
(5) A subspace of \mathbb{R}^{3} is either the origin, a line through the origin, a plane through the origin, or all of \mathbb{R}^{3}.
(6) If A is an $m \times n$ matrix, the set of solutions to the homogeneous matrix equation $A \vec{x}=\overrightarrow{0}$ is a subspace of \mathbb{R}^{n}.

