Systems of linear equations

Systems of linear equations

Why systems of linear equations are cool:

- Solutions to systems of linear equations can be thought of as solutions to matrix equations - solving the vector version of the equation $a x=b$, the equation $A \vec{x}=\vec{b}$ (Sections 3.1, 3.2, 3.3).

Systems of linear equations

Why systems of linear equations are cool:

- Solutions to systems of linear equations can be thought of as solutions to matrix equations - solving the vector version of the equation $a x=b$, the equation $A \vec{x}=\vec{b}$ (Sections 3.1, 3.2, 3.3).
- Systems of linear equations describe linear objects in n-dimensional space: lines, planes, hyperplanes, etc. - in general called subspaces of \mathbb{R}^{n} (Sections 3.4 and 3.5).

Systems of linear equations

Why systems of linear equations are cool:

- Solutions to systems of linear equations can be thought of as solutions to matrix equations - solving the vector version of the equation $a x=b$, the equation $A \vec{x}=\vec{b}$ (Sections 3.1, 3.2, 3.3).
- Systems of linear equations describe linear objects in n-dimensional space: lines, planes, hyperplanes, etc. - in general called subspaces of \mathbb{R}^{n} (Sections 3.4 and 3.5).
- Solutions to systems of linear equations can be thought of as inverse images of matrix functions: $A \vec{x}=\vec{b}$ asks for the set of all input vectors \vec{x} that yield the output vector \vec{b} (Sections 6.1-6.4).
- A system of linear equations is a set of equations of the form

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

This is called a system of m equations with n unknowns.

- A system of linear equations is a set of equations of the form

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

This is called a system of m equations with n unknowns.

- We write the system compactly using an augmented matrix:

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

Elementary row operations on an augmented matrix:

- Multiply a row by a nonzero scalar.

Elementary row operations on an augmented matrix:

- Multiply a row by a nonzero scalar.
- Swap two rows.

Elementary row operations on an augmented matrix:

- Multiply a row by a nonzero scalar.
- Swap two rows.
- Add a multiple of one row to another.
- A matrix is in reduced row echelon form if it satisfies the following properties:
(1) Rows consisting of all zeros appear at the bottom of the matrix.
- A matrix is in reduced row echelon form if it satisfies the following properties:
(1) Rows consisting of all zeros appear at the bottom of the matrix.
(2) The first nonzero entry in each row with any nonzero entries is 1 , called the leading 1 in that row.
- A matrix is in reduced row echelon form if it satisfies the following properties:
(1) Rows consisting of all zeros appear at the bottom of the matrix.
(2) The first nonzero entry in each row with any nonzero entries is 1 , called the leading 1 in that row.
(3) If a column contains a leading 1 , then all other entries in that column are zero.
- A matrix is in reduced row echelon form if it satisfies the following properties:
(1) Rows consisting of all zeros appear at the bottom of the matrix.
(2) The first nonzero entry in each row with any nonzero entries is 1 , called the leading 1 in that row.
(3) If a column contains a leading 1 , then all other entries in that column are zero.
(4) Each leading 1 is further to the right than any above it.
- A matrix is in reduced row echelon form if it satisfies the following properties:
(1) Rows consisting of all zeros appear at the bottom of the matrix.
(2) The first nonzero entry in each row with any nonzero entries is 1 , called the leading 1 in that row.
(3) If a column contains a leading 1 , then all other entries in that column are zero.
(4) Each leading 1 is further to the right than any above it.
- The location in the matrix corresponding to a leading 1 is called a pivot position, and the column it's in is a pivot column.
- The variables corresponding to the leading 1's are called leading variables, and the others are free variables.
- A matrix is in reduced row echelon form if it satisfies the following properties:
(1) Rows consisting of all zeros appear at the bottom of the matrix.
(2) The first nonzero entry in each row with any nonzero entries is 1 , called the leading 1 in that row.
(3) If a column contains a leading 1 , then all other entries in that column are zero.
(4) Each leading 1 is further to the right than any above it.
- The location in the matrix corresponding to a leading 1 is called a pivot position, and the column it's in is a pivot column.
- The variables corresponding to the leading 1's are called leading variables, and the others are free variables.
- If we perform a series of row operations to get matrix A into the matrix U in reduced row echelon form, then we say U is the reduced row echelon form of A.
- A matrix is in reduced row echelon form if it satisfies the following properties:
(1) Rows consisting of all zeros appear at the bottom of the matrix.
(2) The first nonzero entry in each row with any nonzero entries is 1 , called the leading 1 in that row.
(3) If a column contains a leading 1 , then all other entries in that column are zero.
(4) Each leading 1 is further to the right than any above it.
- The location in the matrix corresponding to a leading 1 is called a pivot position, and the column it's in is a pivot column.
- The variables corresponding to the leading 1's are called leading variables, and the others are free variables.
- If we perform a series of row operations to get matrix A into the matrix U in reduced row echelon form, then we say U is the reduced row echelon form of A.

Theorem

Every matrix has exactly one reduced row echelon form.

- A linear system is homogenous if all the b's are 0 .
- A linear system is homogenous if all the b's are 0 .
- A linear system is consistent if it has at least one solution.
- A linear system is homogenous if all the b's are 0 .
- A linear system is consistent if it has at least one solution.

Question: How many solutions can a linear system have?

- A linear system is homogenous if all the b's are 0 .
- A linear system is consistent if it has at least one solution.

Question: How many solutions can a linear system have?

Theorem

Every linear system has either 0, 1, or ∞ solutions.

- A linear system is homogenous if all the b's are 0 .
- A linear system is consistent if it has at least one solution.

Question: How many solutions can a linear system have?

Theorem

Every linear system has either 0, 1, or ∞ solutions.
The rank of a matrix A is the number of leading 1's / pivot columns / leading variables in its reduced row echelon form.

- A linear system is homogenous if all the b's are 0 .
- A linear system is consistent if it has at least one solution.

Question: How many solutions can a linear system have?

Theorem

Every linear system has either 0,1 , or ∞ solutions.
The rank of a matrix A is the number of leading 1's / pivot columns / leading variables in its reduced row echelon form.
Suppose a linear system has m equations, n unknowns, and rank r. (So the non-augmented matrix has m rows and n columns.) How many solutions could the system have if:
(1) $r=m$?
(2) $r=n$?
(3) $r<n$?
(4) $r=m=n$?
(5) $m<n$?

- A linear system is homogenous if all the b's are 0 .
- A linear system is consistent if it has at least one solution.

Question: How many solutions can a linear system have?

Theorem

Every linear system has either 0,1 , or ∞ solutions.
The rank of a matrix A is the number of leading 1's / pivot columns / leading variables in its reduced row echelon form.
Suppose a linear system has m equations, n unknowns, and rank r. (So the non-augmented matrix has m rows and n columns.) How many solutions could the system have if:
(1) $r=m$?
(2) $r=n$?
(3) $r<n$?
(4) $r=m=n$?
(5) $m<n$?
(6) What if the linear system is homogeneous?

