Linear transformations

A linear transformation is a function T from \mathbb{R}^{n} to \mathbb{R}^{m} that satisfies
(1) $T(c \vec{u})=c T(\vec{u})$ for all vectors \vec{u} in \mathbb{R}^{n} and all real numbers c.
(Homogeneity)
(2) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all vectors \vec{u} and \vec{v} in \mathbb{R}^{n}. (Additivity)

If $m=n$ then T is also called a linear operator on \mathbb{R}^{n}.

Linear transformations

A linear transformation is a function T from \mathbb{R}^{n} to \mathbb{R}^{m} that satisfies
(1) $T(c \vec{u})=c T(\vec{u})$ for all vectors \vec{u} in \mathbb{R}^{n} and all real numbers c. (Homogeneity)
(2) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all vectors \vec{u} and \vec{v} in \mathbb{R}^{n}. (Additivity) If $m=n$ then T is also called a linear operator on \mathbb{R}^{n}.

A matrix transformation is a function T from \mathbb{R}^{n} to \mathbb{R}^{m} given by $T(\vec{x})=A \vec{x}$ for some $m \times n$ matrix A.

Another awesome amazing theorem of amazing awesomeness

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if and only if it's a matrix transformation.

Linear transformations

A linear transformation is a function T from \mathbb{R}^{n} to \mathbb{R}^{m} that satisfies
(1) $T(c \vec{u})=c T(\vec{u})$ for all vectors \vec{u} in \mathbb{R}^{n} and all real numbers c. (Homogeneity)
(2) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all vectors \vec{u} and \vec{v} in \mathbb{R}^{n}. (Additivity) If $m=n$ then T is also called a linear operator on \mathbb{R}^{n}.

A matrix transformation is a function T from \mathbb{R}^{n} to \mathbb{R}^{m} given by $T(\vec{x})=A \vec{x}$ for some $m \times n$ matrix A.

Another awesome amazing theorem of amazing awesomeness

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if and only if it's a matrix transformation.

Corollary. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then $T(\vec{x})=A \vec{x}$, where $A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right) \cdots T\left(\vec{e}_{n}\right)\right]$.

What do these linear transformations do to this square?
(1) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(2) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

(3) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(9) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(-) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(6) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(2) $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

Recall:

- The inverse image $T^{-1}(\vec{b})$ under the function T is the set of vectors \vec{x} for which $T(\vec{x})=\vec{b}$.
- The range of the function T is the set of outputs of T.

Properties of linear transformations:

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the linear transformation defined by $T(\vec{x})=A \vec{x}$, then
(1) $T(\overrightarrow{0})=\overrightarrow{0}$.
(2) $T\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{p} \vec{v}_{p}\right)=c_{1} T\left(\vec{v}_{1}\right)+c_{2} T\left(\vec{v}_{2}\right)+\ldots+c_{p} T\left(\vec{v}_{p}\right)$. (Linear transformations preserve linear combinations.)
(3) The range of T is the span of the columns of A.
(9) The vector \vec{b} is in the range of T if and only if $A \vec{x}=\vec{b}$ is consistent.
(0) The set of solutions to $A \vec{x}=\vec{b}$ is the inverse image $T^{-1}(\vec{b})$.
(0) The range of T is a subspace of \mathbb{R}^{m}.
(0) The inverse image $T^{-1}(\overrightarrow{0})$ is a subspace of \mathbb{R}^{n}.

Orthogonal transformations

Theorem

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the linear transformation defined by $T(\vec{x})=A \vec{x}$. The following are equivalent.
(1) $\|T(\vec{x})\|=\|\vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$ (T is orthogonal).
(2) $\left|\mid A \vec{x}\|=\| \vec{x} \|\right.$ for all $\vec{x} \in \mathbb{R}^{n}$
(3) $A^{-1}=A^{T}$ (A is orthogonal).
(4) $A^{T} A=I$.
(5) $A \vec{x} \cdot A \vec{y}=\vec{x} \cdot \vec{y}$ for all \vec{x} and \vec{y} in \mathbb{R}^{n}.
(0) The columns of A are orthonormal (orthogonal and length 1).
(7) The rows of A are orthonormal.

Orthogonal transformations preserve lengths and angles, so they correspond to rigid motions in space.

