A *linear transformation* is a function T from \mathbb{R}^n to \mathbb{R}^m that satisfies

- $T(c\vec{u}) = cT(\vec{u})$ for all vectors \vec{u} in \mathbb{R}^n and all real numbers c. (Homogeneity)
- 2 $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all vectors \vec{u} and \vec{v} in \mathbb{R}^n . (Additivity)

If m = n then T is also called a *linear operator* on \mathbb{R}^n .

A *linear transformation* is a function T from \mathbb{R}^n to \mathbb{R}^m that satisfies

- $T(c\vec{u}) = cT(\vec{u})$ for all vectors \vec{u} in \mathbb{R}^n and all real numbers c. (Homogeneity)
- 2 $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all vectors \vec{u} and \vec{v} in \mathbb{R}^n . (Additivity)

If m = n then T is also called a *linear operator* on \mathbb{R}^n .

A *matrix transformation* is a function T from \mathbb{R}^n to \mathbb{R}^m given by $T(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A.

Another awesome amazing theorem of amazing awesomeness

A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if and only if it's a matrix transformation.

A *linear transformation* is a function T from \mathbb{R}^n to \mathbb{R}^m that satisfies

- $T(c\vec{u}) = cT(\vec{u})$ for all vectors \vec{u} in \mathbb{R}^n and all real numbers c. (Homogeneity)
- 2 $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all vectors \vec{u} and \vec{v} in \mathbb{R}^n . (Additivity)

If m = n then T is also called a *linear operator* on \mathbb{R}^n .

A *matrix transformation* is a function T from \mathbb{R}^n to \mathbb{R}^m given by $T(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A.

Another awesome amazing theorem of amazing awesomeness

A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if and only if it's a matrix transformation.

Corollary. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $T(\vec{x}) = A\vec{x}$, where $A = [T(\vec{e}_1)T(\vec{e}_2)\cdots T(\vec{e}_n)]$.

What do these linear transformations do to this square?

$$T\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

Recall:

- The **inverse image** $T^{-1}(\vec{b})$ under the function *T* is the set of vectors \vec{x} for which $T(\vec{x}) = \vec{b}$.
- The **range** of the function *T* is the set of outputs of *T*.

Properties of linear transformations:

If $T : \mathbb{R}^n \to \mathbb{R}^m$ is the linear transformation defined by $T(\vec{x}) = A\vec{x}$, then **1** $T(\vec{0}) = \vec{0}$.

- 2 $T(c_1\vec{v}_1 + c_2\vec{v}_2 + \ldots + c_p\vec{v}_p) = c_1T(\vec{v}_1) + c_2T(\vec{v}_2) + \ldots + c_pT(\vec{v}_p).$ (Linear transformations preserve linear combinations.)
- The range of *T* is the span of the columns of *A*.
- **(**) The vector \vec{b} is in the range of T if and only if $A\vec{x} = \vec{b}$ is consistent.
- **(**) The set of solutions to $A\vec{x} = \vec{b}$ is the inverse image $T^{-1}(\vec{b})$.
- The range of T is a subspace of \mathbb{R}^m .
- The inverse image $T^{-1}(\vec{0})$ is a subspace of \mathbb{R}^n .

Theorem

Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is the linear transformation defined by $T(\vec{x}) = A\vec{x}$. The following are equivalent.

- **1** $||T(\vec{x})|| = ||\vec{x}||$ for all $\vec{x} \in \mathbb{R}^n$ (*T* is orthogonal).
- **2** $||A\vec{x}|| = ||\vec{x}||$ for all $\vec{x} \in \mathbb{R}^n$
- 3 $A^{-1} = A^T$ (A is orthogonal).
- $A^T A = I.$
- $A\vec{x} \cdot A\vec{y} = \vec{x} \cdot \vec{y}$ for all \vec{x} and \vec{y} in \mathbb{R}^n .
- The columns of A are orthonormal (orthogonal and length 1).
- The rows of A are orthonormal.

Orthogonal transformations preserve lengths and angles, so they correspond to rigid motions in space.